
1. Introduction
Variable-resolution climate models have become increasingly popular in the past decade (e.g., Skamarock 
et al., 2012; Danilov et al., 2017; Korn, 2017), as they offer the ability to create high-resolution regions within 
global domains, with fine control over the extent and transitions in grid-cell size. It is well known that the size 
of the largest time-step that can be used by an explicit time-stepping scheme is bounded above by the size of 
the smallest cell in the mesh according to the Courant–Friedrichs–Lewy (CFL) condition. This restriction is of 
particular interest on meshes where the cell size varies greatly. To optimize the computational cost of running 
a model on a variable-resolution mesh, one would like to select a small time-step on regions of high resolution 
(regions defined by small cells), and a large time-step on regions of low resolution (defined by large cells). For 
simplicity, variable-resolution climate model components typically use global time-stepping schemes, where a 
uniform time-step is used on the entire computational domain. As a result, one is forced to use a small time-step 
that is restricted by the CFL condition influenced by the smallest cell in the mesh even on large cells that would 
admit a larger time-step in the absence of smaller cells. This approach results in unnecessary computational cost 
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on low-resolution cells. Local time-stepping (LTS) schemes can combat this performance bottle-neck by allowing 
the selection of different time-steps on different regions of the mesh according to local CFL conditions instead 
of a single global one.

In this paper, we present the first practical application of LTS in the framework of the Model for Prediction 
Across Scales-Ocean (MPAS-O) (Ringler et al., 2013) by modeling the storm surge caused by Hurricane Sandy 
on the eastern coast of the United States. MPAS-O is a global ocean model being developed at Los Alamos 
National Laboratory (LANL) as a part of the Department of Energy's Energy Exascale Earth System Model 
(E3SM) (Golaz et al., 2019; Petersen et al., 2019). MPAS-O is a multi-layer, primitive equation global ocean 
model that uses the TRiSK scheme for spatial discretization (Ringler et al., 2010; Thuburn et al., 2009), which is 
a staggered Arakawa C-grid method (Arakawa & Lamb, 1977) defined on a Voronoi tessellation (Ju et al., 2011; 
Okabe, 2017). The vertical coordinates are treated with an Arbitrary Lagrangian-Eulerian (ALE) framework, as 
detailed in Petersen et al. (2015). A feature of MPAS-O that is of particular interest to this work is the ability to 
run global ocean simulations on unstructured meshes of variable resolution (Hoch et al., 2020), that is, compu-
tational cells of different sizes can be used on specific regions of the globe depending on the desired degree 
of spatial accuracy. For storm surge modeling and for the accurate simulation of coastal processes in general, 
variable resolution meshes with high resolution on the coast and low resolution in the deep ocean are the obvious 
choice to maximize computational performance while at the same time maintaining the accuracy of the physical 
predictions (Mandli & Dawson, 2014; Pringle et al., 2021).

Several LTS methods have been investigated in the literature for a broad span of applications, and a comprehen-
sive overview of these methods is beyond the scope of this work. Examples of such applications include solving 
Maxwell's equations in Montseny et al. (2008) and the wave equation in Diaz and Grote (2009), and problems 
in computational aeroacoustics in Liu et al. (2010). In Trahan and Dawson (2012) and Dawson et al. (2013), a 
first-order LTS scheme has been used to solve the shallow-water equations and for storm surge modeling using 
a model similar to the one considered in this work. The analysis in Dawson et al. (2013) shows that their LTS 
scheme produces results comparable to that of a global second order scheme, in about half the computational 
time. A difference between Dawson et al. (2013) and the present work is that a discontinuous Galerkin discre-
tization was considered in the former, whereas MPAS-O relies on the TRiSK scheme. Moreover, our choice 
of LTS scheme is not the same as in Dawson et al. (2013), but is the third order method developed in Hoang 
et al. (2019). The schemes in Hoang et al. (2019) are particularly relevant to the MPAS framework as they were 
developed specifically to solve the shallow water equations (SWEs) using TRiSK horizontal discretizations. 
These time-stepping schemes have been implemented by the authors in the shallow water core of MPAS-O and 
it has been shown that they can solve the SWEs up to 70% faster than higher-order global methods (Capodaglio 
& Petersen, 2022).

The focus of the current work is to explore the use of LTS in MPAS-O via a real-world application, with the 
goal of showing that LTS can produce virtually the same numerical solution as higher-order global methods in 
considerably less time. Specifically, we use LTS to model the storm surge in the region of Delaware Bay during 
Hurricane Sandy and consider meshes with regions of very high resolution, such as the one in Figure 1. This 
particular mesh contains cells with 2 km width in Delaware Bay and a global background resolution of 120 km, 
but the meshes that will be used throughout this work have unprecedentedly high resolution near the coast, with 
cell widths as small as 125 m on Delaware Bay. We are able to run at such high resolutions by using a single-layer 
ocean model, as opposed to the multi-layer model, with 60–80 layers, that is the default for MPAS-O. The choice 
of a single-layer model for this study was motivated by two reasons. First, the processes relevant to a storm surge 
model are essentially barotropic in nature, so a single layer is a good approximation of the physics involved. 
Second, the LTS schemes developed in Hoang et al. (2019) were not developed for a layered model and as such 
do not take into account vertical transport between layers; work is currently underway to adapt these schemes to 
a layered model.

The paper is structured as follows. We begin by describing the Hurricane Sandy test case and model configura-
tion. We then give a brief background on the LTS schemes developed in Hoang et al. (2019) and a discussion of 
the inherent challenges of configuring a mesh for running with LTS. Next, we provide an in-depth description 
of a set of meshes of increasingly high resolution on which we run our Hurricane Sandy simulations. Finally, we 
compare the performance in terms of CPU-time of LTS scheme of order three in Hoang et al. (2019) (LTS3) to the 
classical fourth-order, four-stage Runge-Kutta method (RK4) and show that LTS3 can obtain a sea-surface height 
solution substantially faster than RK4, with minimal differences in the quality of the prediction.
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2. Methods
2.1. Hurricane Sandy Test Case

The physical processes involved in the storm surge created by a hurri-
cane are essentially barotropic in nature and can therefore be modeled by 
a single-layer ocean, the most important physical processes being forcing 
due to tidal cycles, surface wind stress, and atmospheric pressure (Mandli 
& Dawson, 2014; Pringle et al., 2021). Historically, MPAS-O has been used 
primarily for long-term (on the order of hundreds of years) climate modeling; 
such models require a multi-layered ocean that can resolve both barotropic 
and baroclinic motions. As such, it is uncommon for MPAS-O to be run in a 
single layer configuration and only recently was the ability to compute tidal 
forcing added to the model (Barton et al., 2022).

Figure 2 shows observed sea-surface height (SSH) at a particular tidal gauge 
versus time compared to the SSH predicted by MPAS-O in a multi-layer 
configuration and a single-layer configuration. In Figure 2, the multi-layered 
model uses a barotropic-baroclinic split-explicit time-stepping scheme 
(Higdon, 2005), and the single-layer model uses RK4. This figure shows that 
both the single-layer and multi-layer models include the relevant physical 
processes of tidal forcing, which produces semidiurnal oscillations, and the 
surface winds and atmospheric pressure, which produce the storm surge.

Previous work on LTS in the MPAS framework has been done exclusively 
in the shallow-water core of MPAS-O. In the single layer configuration 
considered here, the ocean core differs from the shallow-water core in having 

Figure 1. Model for Prediction Across Scales variable-resolution mesh on the East Coast of the US, with 2 km resolution in 
Delaware Bay.

Figure 2. Sea-surface height during Hurricane Sandy as predicted by a 
multi-layer ocean model and single-layer model considered here compared 
to observed data on the DelBay2km mesh (see Table 1). Split-explicit refers 
to the first-order, explicit, split barotropic-baroclinic time-stepping scheme 
that is the method of choice for a multi-layer model in MPAS-O (Ringler 
et al., 2013).
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realistic bathymetry, realistic coastlines, and additional forcing terms necessary to simulate the storm surge, all of 
which are absent from the shallow-water code base. The affinity between the shallow-water core of MPAS and the 
present model, and the need for high local resolution (generally with cells smaller than 1–5 km in width) for the 
accurate prediction of sea-surface height in coastal regions, make storm surge modeling a good real-world  test-
case for LTS.

The momentum and thickness equations for the Hurricane Sandy model are given by Equation 1. Here, the thick-
ness equation is the conservation of volume for an incompressible fluid, where the volume is normalized by the 
cell area, which is constant in time.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜕𝜕𝐮𝐮

𝜕𝜕𝜕𝜕
+ (∇ × 𝐮𝐮 + 𝑓𝑓𝐤𝐤) × 𝐮𝐮 = −∇𝐾𝐾 −

1

𝜌𝜌0
∇𝑝𝑝𝑠𝑠 − 𝑔𝑔∇(𝜂𝜂 − 𝜂𝜂𝐸𝐸𝐸𝐸 − 𝛽𝛽𝜂𝜂)

−𝜒𝜒
𝐮𝐮

𝐻𝐻
− D

|𝐮𝐮|𝐮𝐮
ℎ

+ W

|𝐮𝐮W − 𝐮𝐮|(𝐮𝐮W − 𝐮𝐮)

ℎ
,

𝜕𝜕ℎ

𝜕𝜕𝜕𝜕
+ ∇ ⋅ (ℎ𝐮𝐮) = 0.

 (1)

In these equations u is the horizontal velocity, t is the time coordinate, f is the Coriolis parameter, k is the local 
vertical unit vector, 𝐴𝐴 𝐴𝐴 =

|𝐮𝐮|2

2
 is the kinetic energy per unit mass, ρ0 is the (constant) fluid density, p s is the surface 

pressure, g is the gravitational constant, η is the sea-surface height perturbation, ηEQ is the sea-surface height 
perturbation due to equilibrium tidal forcing (Arbic et al., 2018), β is the self-attraction and loading coefficient 
(Accad et al., 1978), 𝐴𝐴



𝐻𝐻
 is a spatially varying internal tide dissipation coefficient (Jayne & St. Laurent, 2001), χ is 

a scalar tuning factor optimized for barotropic tides response (Barton et al., 2022). H is the resting depth of the 
ocean, h is the total ocean thickness such that h = H + η, 𝐴𝐴 D is the bottom drag coefficient, 𝐴𝐴 W is the wind stress 
coefficient, and uW is the horizontal wind velocity.

The wind velocity uW and the atmospheric pressure p s are linearly interpolated from data observed at 1-hr incre-
ments between 10 October 2012 and 11 March 2012. Hurricane Sandy hit the Eastern US coast on 29 October 
2012. The wind and atmospheric surface pressure data were obtained from the Climate Forecast System Version 
2 (CFSv2) reanalysis product (Saha et al., 2014). Our bathymeteric data set is SRTM15+ (Tozer et al., 2019). 
The equilibrium tidal potential ηEQ is computed with the 8 major tidal constituents M2, S2, N2, K2, K1, O1, Q1, 
and P1.

When running the model, we start with initial conditions of zero for both u and η everywhere on the globe and 
let model spin-up for ten simulated days while the primary forcing is due to winds and tides. For further model 
configuration details, see the Data Availability Statement at the end of this manuscript.

The model equations are spatially discretized using a C-grid type finite volume method called the TRiSK 
scheme wherein the fluid thickness h is stored at cell centers and the normal component of the fluid velocity 
u is computed at cell edges. This method has been shown to conserve the total energy of a system and robustly 
simulates potential vorticity (Ringler et  al., 2010; Thuburn et  al., 2009). The current code configuration was 
chosen to show the performance improvements possible with LTS. Some processes, like wetting and drying cells 
and spatially varying bottom friction, were not included here because they are still under development. Because 
a wetting and drying scheme is not used here, we avoid the possibility of drying cells by setting the minimum 
value for the depth to two m. It is likely that omission of such a scheme has a negative effect on the accuracy of 
our model as compared to observational data. Similarly, it is likely that a working implementation of spatially 
varying bottom friction would improve comparisons to observed data. However, we are primarily concerned 
with the performance of LTS3 and its accuracy compared to that of well accepted global schemes, which are not 
affected by these omissions.

2.2. Time-Stepping Schemes

The particular LTS scheme used here is based on so-called, strong stability preserving Runge-Kutta (SSPRK) 
methods, which are explicit methods for solving systems of ODEs resulting from the spatial discretization of 
hyperbolic conservation laws. SSPRK methods satisfy the total variation diminishing (TVD) property, which 
means that given a sufficiently small time-step, the total spatial variation of an SSPRK solution will not increase 
over time, which implies that the solution will remain stable. For a more complete discussion of SSPRK methods, 
see Gottlieb and Shu (1998) and Gottlieb et al. (2001).
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The LTS method used here is derived from a three-stage, third-order SSPRK 
method (SSPRK3) and is itself third-order; we refer to this method as LTS3. 
LTS3 was originally developed for use in the MPAS framework by Hoang 
et al. (2019), then implemented in the MPAS framework by Capodaglio and 
Petersen (2022). While a full review of the LTS3 scheme is outside the scope 
of this paper, and can be found in Hoang et al. (2019) and Capodaglio and 
Petersen (2022), we give a short description of the scheme for completeness. 
Consider Figure 3, which serves as a hypothetical mesh wherein there are 
four classes of cells. The red cells are referred to as the coarse cells, the 
yellow as interface 2 cells, the pink as interface 1 cells, and the blue as fine 
cells. The coarse, interface 1, and interface 2 cells all advance with the coarse 
time-step Δtcoarse and the fine cells advance with the fine time-step Δtfine such 
that 𝐴𝐴 Δ𝑡𝑡fine =

Δ𝑡𝑡coarse

𝑀𝑀
 for some positive integer M. For practical applications, 

the labels fine and coarse denote the regions by their cell size, but the algorithm simply advances two different 
time steps in the two regions, so the regions could have other cell sizes—for example, identically sized cells for 
testing purposes.

The LTS3 scheme proceeds as follows.

1.  Starting from time t n, advance the solution on the coarse, interface 1, and interface 2 cells with the first two 
stages of SSPRK3 using Δtcoarse.

2.  Sub-cycle on the fine cells; advance to t n+1 by repeating all three stages of SSPRK3 M times using Δtfine.
 • This requires that we know values for u and h at intermediate time-levels on interface 1 cells. Obtain 

predicted values for these with an appropriate prediction step using data from time t n and the first two stages 
of SSPRK3 that were obtained in step 1.

3.  Advance to time t n+1 on the coarse cells with the final stage of SSPRK3.
4.  Correct the values for u and h at time t n+1 on interface 1 and interface 2 cells by accounting for fluxes coming 

from the fine cells during the sub-cycling in step 2.

For brevity, the above description omits several delicate parts of the scheme. First, note that in step 1, to advance 
with the second stage of SSPRK3 on the interface cells that border the fine region, we need the first stage SSPRK 
data on the three layers of fine cells adjacent to the interface region. Three layers are required here because the 
spatial discretization of the model equations mandates that a given cell's advancement depends on the three 
layers of adjacent cells. This data is not used to advance the fine cells themselves, however Δtcoarse is employed 
in this computation. Although we did not carry out an in-depth analysis to confirm this, it is likely that the 
interface-adjacent fine cells need to be large enough to admit the coarse time-step. In step 2, the prediction of 
values for u and h at intermediate time-levels on interface 1 cells is obtained via a truncated Taylor expansion 
(in t) centered at time t n, where the unknown derivatives are estimated by known values of existing data from t n 
and the first two stages of SSPRK3. We refer the reader to Hoang et al. (2019) for a full description of this step.

LTS3 is 𝐴𝐴 
(
(Δ𝑡𝑡)

3
)
 everywhere, including on the interface layers. Figures 4a and 4b show the convergence in time 

for both u and h using RK4 and LTS3 respectively, on the spatially discretized versions of the model Equation 1. 
The root-mean-square (RMS) error is defined as

𝐸𝐸RMS =

√
∑𝑁𝑁

𝑖𝑖=1
(𝑠𝑠𝑖𝑖 − 𝑚𝑚𝑖𝑖)

2

𝑁𝑁
, (2)

where 𝐴𝐴 {𝑠𝑠𝑖𝑖}
𝑁𝑁
𝑖𝑖=1 is the discrete reference solution, 𝐴𝐴 {𝑚𝑚𝑖𝑖}

𝑁𝑁
𝑖𝑖=1 is the discrete model solution, and N is the number of 

discretization points.

2.3. Meshes and LTS Configuration

Here we consider five different meshes; the relevant parameters for each are given in Table 1. Of particular inter-
est is the physical distribution of regions of low and high resolutions. Each mesh is divided into five regions, each 
of which is populated by cells of a different size, with smooth transitions in resolution between regions. These 
regions are Delaware Bay, the area around the Delaware coast, the area around the eastern coast of the US, the 
western Atlantic ocean, and the rest of the globe. In the Resolutions section of Table 1, we give the cell width in 
kilometers for each of these five regions, for all meshes considered. In particular, note that the highest resolutions 

Figure 3. A mesh with cells labeled for local time-stepping. Red cells are 
coarse, yellow cells are interface 2, pink cells are interface 1, and blue are fine.
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in these meshes range from 2 km down to 125 m and the ratio of the lowest 
to highest resolution ranges from 60 to 240. It should be noted that even our 
lowest resolution mesh using 2 km cells in Delaware Bay is of extremely high 
resolution for MPAS-O.

All meshes were created with JIGSAW (Engwirda, 2017), a library that can 
quickly generate high-quality variable-resolution meshes. Global meshes 
are designed by specifying the cell width distribution across the sphere 
(Figure 5), which is then passed into JIGSAW. The five regions of the mesh 
were used as a straightforward means of providing regional refinement in 
the Delaware Bay estuary within a global mesh. The Delaware Bay region 
is the highest level of refinement, while the Delaware coast, and eastern US 
coast regions provide a smooth transition to the coarser global resolution. 
The western Atlantic Ocean region uses a higher level of refinement than the 
global ocean to better resolve the hurricane wind and pressure fields, while 
the rest of the Earth has the coarsest resolution to reduce the total number of 
cells in the mesh.

2.3.1. Choice of Time-Steps

The time-steps used on each mesh and each LTS configuration for perfor-
mance tests are given in Table 1. These time-steps were obtained experimen-
tally and are the largest values that are admissible to guarantee stability of 
the model.

Because there are two different time-steps for the LTS scheme and these 
must differ by a factor of M such that 𝐴𝐴 Δ𝑡𝑡fine =

Δ𝑡𝑡coarse

𝑀𝑀
 , they can be obtained 

in different orders; one could find the largest time-step admittable on the 
coarse region of the mesh then find the smallest value of M that gave an 
admittable fine time-step, or first find the largest admittable fine time-step 
then the largest value of M that gives an admittable coarse time-step. This 
has the result of the time-step in one region or the other not technically being 
maximal.

There are advantages to both methods that depend on the mesh itself. For 
instance, on a mesh where there are sufficiently more coarse cells than fine 
cells, one might wish to first maximize the time-step in the coarse region 
and take a small penalty to the size of the fine time-step. In this paper 
however, we have opted to find admittable time-steps by first maximizing 
the fine time-step, then by finding the largest value of M that gives a valid 
coarse time-step with the intention on minimizing the work done in the fine 
region.

A primary concern of this work is to compare the efficiency, in terms of 
CPU-time, of LTS3 and RK4. One should note that RK4 uses one more 
Runge-Kutta stage per time-step than LTS3 and therefore has a lessened 
restriction on the size of the largest time-step it can use on high-resolution 

cells, for example, see Table 1 and note that on the mesh labeled DelBay2km, RK4 uses a global time-step of 
30 s, while LTS3 uses a fine time-step of 18 s. Consider that, on the smallest cells, RK4 advances on average 

𝐴𝐴
30

4
= 7.5 seconds per stage while LTS3 advances on average 𝐴𝐴

18

3
= 6 seconds per stage, which means that RK4 

would be 25% faster if LTS3 were to use a global time-step. This puts LTS3 at an inherent disadvantage when 
comparing computational performance on these meshes. Nevertheless, we will show that LTS3 is still capable 
of considerably outperforming RK4 in almost all of our case studies. We have chosen to use RK4 as our point 
of comparison rather than a third order method because RK4 is the state-of-the-art scheme in MPAS-O for a 
single-layer model.

Figure 4. Temporal convergence for layer thickness h and normal velocity 
u and using RK4 (a) and LTS3 (b) on the discretized version of the model 
Equation 1. Convergence tests were conducted on the DelBay2km mesh 
(see Table 1 and Figure 5). For LTS3, we used M = 4 and the values on the 
horizontal axis are the coarse time-steps. The errors were calculated against a 
reference solution generated by RK4 with Δt = 0.1. The run duration is 1 hr. 
The RMS error is as defined in Equation 2.
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2.3.2. LTS Mesh Parameters

When designing a mesh for use with LTS there are two parameters of particular interest, which we refer to as 
the count ratio and the resolution ratio. Both of these parameters depend on the cells where the fine time-step is 
used, referred to as the fine cells, and the cells where the coarse time-step is used, referred to as the coarse cells. 
Note that, in this discussion, the label of fine or coarse does not necessarily reference the size of a cell, but rather 
which time-step is used to advance it. The region made up of fine cells is called the fine region while the rest of 
the globe is called the coarse region.

Figure 5. Global cell width in kilometers for each mesh described in Table 1. Each subplot shares the same color scale, which is in log-space, so differences in 
high-resolution areas can be easily distinguished.
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The count ratio is the ratio of the number of cells in the coarse region to the 
number of cells in the fine region, that is,

count ratio =
number of coarse time-step cells

number of fine time-step cells
. 

The resolution ratio is the ratio of the cell width of the coarse cells to the cell 
width of the fine cells, that is,

resolution ratio =
cell width of coarse time-step cells

cell width of fine time-step cells
. 

In the case where there are cells of multiple resolutions in either region, as 
is the case in our meshes, we consider the smallest value of cell width in a 
given region as it is the smallest cell that restricts the size of the time-step 
admittable in that region. For example, in DelBay2km with the EC config-
uration the smallest fine cells have a cell width of 2 km and the smallest 
coarse cells have a cell width of 30 km so we would say that the resolution 
ratio was 15.

These parameters are the primary drivers behind the performance of LTS. 
The higher the resolution ratio is, the larger the coarse time-step can be, 
allowing LTS to take significantly less time-steps on coarse cells compared 
to a global method, which must use a small time-step everywhere. Similarly, 
the higher the count ratio is, the more coarse cells there are in a mesh where 
LTS has to do less work than a global method. To see the importance of 
these parameters, consider the following idealized analysis. Consider a mesh 
consisting of nc cells which use a coarse time-step Δtcoarse and nf cells which 
use a fine time-step Δtfine. Let M be such that 𝐴𝐴 𝐴𝐴 =

Δ𝑡𝑡coarse

Δ𝑡𝑡fine

 . When advancing 
from one time-level to the next, an LTS scheme does an amount of work 
proportional to nc + Mnf, whereas a global scheme using Δtfine everywhere 
does an amount of work proportional to M(nc + nf). The theoretical maximum 
percentage speedup for LTS is then given by

𝑀𝑀(𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑓𝑓 ) − (𝑛𝑛𝑐𝑐 +𝑀𝑀𝑛𝑛𝑓𝑓 )

𝑀𝑀(𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑓𝑓 )
⋅ 100 % =

𝑀𝑀 − 1

𝑀𝑀

𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐 + 𝑛𝑛𝑓𝑓
⋅ 100 %. (3)

Here, M is an analogue for the resolution ratio, and 𝐴𝐴
𝑛𝑛𝑐𝑐

𝑛𝑛𝑓𝑓
 is the count ratio. 

Using this expression, we can see how both the resolution ratio and the count 
ratio effect theoretical speedup. As M increases, the positive contribution of 
the resolution ratio increases asymptotically toward 1. If we imagine holding 
the number of coarse cells nc fixed, then as we decrease nf, the quantity 𝐴𝐴

𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐+𝑛𝑛𝑓𝑓
 

increases, that is, the larger the count ratio, the more positive the contribu-

tion of 𝐴𝐴
𝑛𝑛𝑐𝑐

𝑛𝑛𝑐𝑐+𝑛𝑛𝑓𝑓
 to the speedup. In general, we see that the best speedups can be 

achieved on meshes with fewer fine cells relative to the number of coarse 
cells. It was shown in Capodaglio and Petersen (2022) that LTS3 is able to achieve this theoretical maximum 
speedup in practice for a given mesh and configuration of the LTS regions.

In a preliminary analysis, we investigated how varying the count and resolution ratios affected the performance 
of LTS in an idealized test case; in the shallow-water core of MPAS-O, we created a test case following test case 
five from Williamson et al. (1992) and generated a series of meshes that had varying values for the count ratio and 
the resolution ratio. We produced the plots in Figure 6, which are relevant to the work done here for two reasons. 
First, the shallow-water equations used to generate this data are identical to those used in our Hurricane Sandy 
test case, except for additional forcing terms used here. That is, we can expect for the results shown in Figure 6 to 
be similar to the results we would get with the Hurricane Sandy test case. Second, this data clearly demonstrates 
the importance of both the count and resolution ratios when considering the performance of LTS.

Figure 6. Speedup versus mesh design parameters: (a) varying count ratio 
while resolution ratio is held constant at 32; (b) varying resolution ratio as 
count ratio is held near one. In both cases, speedup increases and then levels 
off at 50%–70%. Speedup is calculated as in Equation 4.
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The metric by which we compare LTS3 and RK4 is the speedup, or the percentage value that LTS3 is faster than 
RK4. This is computed as

speedup =
time RK4 − time LTS3

time RK4
⋅ 100 %. (4)

Note that this metric is fundamentally different from the one given in Equation 3. The theoretical maximum 
speedup given by Equation 3 measures the performance gains made possible by using LTS versus not using LTS, 
that is, the benefits of using Δtcoarse on parts of the mesh, versus having to use Δtfine everywhere. In contrast, the 
speedup in Equation 4 measures the gain in performance of a specific LTS scheme (LTS3) over a specific global 
scheme (RK4) that uses a global time-step that may not equal the fine time-step used by the LTS scheme. As  such, 
it does not make sense to compare the experimentally obtained speedups from Equation 4 to the theoretical maxi-
mum values from Equation 3.

Figure 6 shows that as either the count ratio or the resolution ratio increases, the speedup increases, and that this 
increase is drastic close to zero. The curves in both plots eventually level off as the speedup becomes limited by 
the other parameter, which is fixed.

Figure 7 shows two configurations for the placement of the fine and coarse regions. The configuration in Figure 7a 
will be referred to as the EC configuration and the configuration in Figure 7b will be referred to as the WA config-
uration. In the EC configuration, the time-step restriction on the coarse cells comes from mid-sized cells in the 
western Atlantic, so the coarse cells away from the western Atlantic are forced to use a smaller time-step than 
is optimal. On the other hand, the WA configuration forces all western Atlantic cells to be inside the fine region 
so that all coarse cells are approximately the same size, which is the largest size among mesh cells, and so admit 
approximately the same large time-step. For example, note how in Table 1, the DelBay2km EC configuration 
uses a coarse time-step of 72 s, while the corresponding WA configuration uses a coarse time-step of 306 s. 
The trade-off in the WA configuration is that the fine region then contains more fine cells that are forced to use 
the fine time-step than the EC configuration. This trade-off between the count ratio and the resolution ratio is a 
significant part of our investigation and is discussed in Section 3.1.

Figure 7. The two configurations of the fine region used for DelBay meshes: the smaller East US Coast fine region (a) and 
the larger Western Atlantic fine region (b).
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2.3.3. Load Balancing, Communication, and Additional Interface Layers

Performing the LTS3 algorithm in parallel requires careful consideration of load balancing. LTS requires that 
cells in a given mesh be sorted into different groups, some are coarse cells, some are fine cells, and some are 
interface cells. Each type of cell requires a different amount of work, so load balancing among MPI processes is 
non-trivial; an efficient way to address this has been a primary concern of Capodaglio and Petersen (2022). For 
effective load-balancing, each MPI rank is given three sets of cells, one set of fine cells, one set of coarse cells, 
and one set of interface cells. The different groups of cells are spread across each rank so that each process has 
an approximately equal number of each type. This helps to ensure that no process is idle while it waits for the 
others to finish work. An issue with this scheme is that in most mesh configurations, there are very few interface 
cells relative to the number of fine or coarse cells. As a result, when running with more than a few processes, 
there may not be enough interface cells in the mesh for an equal number to be spread across processes in a way 
that also respects the expense of MPI communication calls. To avoid this issue, additional interface layers are 
added to the mesh (see Figure 8). Because LTS3 is 𝐴𝐴 

(
(Δ𝑡𝑡)

3
)
 everywhere on the mesh, these additional interface 

layers have no negative impact on the model's accuracy. Adding these additional interface layers allows us to 
insure that there are enough interface cells to spread across a given number of processes. To minimize storage 
requirements, certain computations unique to interface cells are performed during the sub-stepping (Capodaglio 
& Petersen, 2022). The addition of extra interface layers therefore incurs a non-zero computational cost, and so 
it is not viable to simply add an arbitrarily large number of interface cells just to achieve scalability. It is shown 
in Capodaglio and Petersen (2022) that, as a rule of thumb, each process should own at least 100 interface cells 
to achieve sufficient load-balancing. On each mesh and for each LTS fine region configuration, we have set a 
number of interface layers that ensures this requirement is met. The number of interface layers used in each case 
is reported in Table 1, where the given value refers to the number of cell layers for each interface, that is, interface 
1 or interface 2. For example, the number of interface layers for DelBay2km in the EC configuration is reported 
as two, which means there are two layers of interface 1 cells, and two layers of interface 2 cells, for a total of four 
layers of interface cells.

An important feature of the implementation of LTS3, and in fact of any LTS scheme, is the ability to compute 
the model tendencies on arbitrary sub-regions of the mesh. For example, during the fine time-step sub-cycling, 
one needs to compute the tendencies only on the fine cells—any computations on the coarse cells during this step 

Figure 8. An example of a mesh needing additional layers of interface cells for load balancing in DelBay1km. Here, there are 
10 interface layers in total—five layers of interface 1 cells, and five layers of interface 2 cells.
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would be wasted, causing performance to suffer. The task of computing tendency terms on specific sub-regions 
of a parallel partition is a non-trivial task due to the interplay of the MPI-halo layers of the parallel partition 
with the cells and edges that define a given sub-region. As explained in Capodaglio and Petersen (2022), this 
can be done by using MPI memory blocks. Each MPI rank is associated with three memory blocks, each of 
which owns exactly one type of cell; fine, coarse, or interface. The halo cells of each block are allowed to (and 
in fact most often do) contain cells of a different type than those owned by the block. There are several advan-
tages to using this approach: First, the right hand side terms can be computed only on the regions where the 
solution is advanced without any modification to the routines that carry out these computations, which could 
be extremely cumbersome in a complex model like MPAS-O. Second, the parallelism is automatically handled 
and the block halo coincides with the sub-region halo. Third, the block partitioning can be easily achieved using 
METIS (Karypis & Kumar, 1997) and some simple pre-processing Python scripts, as detailed in Capodaglio and 
Petersen (2022).

3. Results
In this section, we discuss the performance of LTS3 compared to RK4, in terms of computational time and accu-
racy of the sea-surface height predictions.

Table 1 
Relevant Parameters for Each Mesh and Local Time-Stepping Configuration Used in Performance Experiments

DelBay2km DelBay1km DelBay500m DelBay250m DelBay125 m

Resolutions: Grid cell width (km)

 Global background 120 60 30 30 30

 Western Atlantic 30 30 15 15 15

 Eastern US coast 10 5 2.5 1.25 0.625

 Delaware coast 5 2.5 1.25 0.625 0.3125

 Delaware Bay 2 1 0.5 0.25 0.125

Mesh Parameters

 Number of cells 58,240 198,776 794,172 1,591,416 4,617,565

 Number of MPI ranks 2 8 32 64 178

 Thousands of cells per MPI rank 29 25 25 25 26

LTS Parameters

Eastern US Coast (EC) Fine Region

 Number of interface layers 2 5 10 20 50

 Count ratio 1.88 1.71 1.71 0.46 0.12

 Resolution ratio 15 30 30 60 120

 ΔtRK4 (s) 30 15 7.5 3.75 1.875

 Δtfine (s) 18 8 4 2 1

 Δtcoarse (s) 72 72 24 24 24

 M 4 9 6 12 24

Western Atlantic (WA) Fine Region

 Number of interface layers 2 5 10 20 50

 Count ratio 0.92 1.28 1.28 0.39 0.11

 Resolution ratio 60 60 60 120 240

 ΔtRK4 (s) 30 15 7.5 3.75 1.875

 Δtfine (s) 18 8 4 2 1

 Δtcoarse (s) 306 152 80 80 80

 M 17 19 20 40 80
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3.1. Computational Time

Figure 9 reports the performance differences in terms of CPU-time of RK4 and 
LTS3 in both the EC and WA configurations. To obtain this data, the model 
has been run using both RK4 and LTS3 for a set number of simulated seconds 
(referred to as the run-time) and the amount of time the model spends on 
time-stepping in both cases was recorded. To account for differences in network 
communication speeds, timings are averaged over five simulations. All simu-
lations were run on the Badger cluster at Los Alamos National Laboratory, 
which is a 660 node compute cluster where each node has 128 GB of memory 
and contains two 2.10 GHz Intel Xeon E5-2695 v4 processors, each having 18 
cores. Badger has a peak compute speed of 798 Tera-FLOPS per second.

Table 2 reports the specific results of each test case, including the values for 
the time integration timer in each case and the number of simulated seconds 
the model was run for. One can note that, on each mesh, the run-time is differ-
ent, and is selected to be the smallest number of seconds that is divisible by 
the coarse time-step used in the WA configuration, the coarse time-step used 
in the EC configuration, and the time-step for RK4. This is to ensure that for 
each method and configuration, there is no case in which the model is actually 
advancing to a time further than intended, which would pollute the results.

In another storm surge focused application of LTS schemes, Dawson 
et al. (2013) are able to cut the computational time of their model in half using 

LTS. We note that these results are not directly comparable to those given here; whereas we compute speedup by 
comparing our LTS scheme to RK4, which uses a larger time-step than the fine time-step used by LTS, the speed-
ups obtained by Dawson et al. (2013) are computed by comparing their LTS scheme to a global scheme using a 
time-step equal to the fine time-step used by LTS. As such, the results from Dawson et al. (2013) are comparable 
to the theoretical maximum speedup given by Equation 3, which LTS3 achieves (Capodaglio & Petersen, 2022).

It is well known that in parallel applications, communication between processes is more expensive than floating-point 
operations in terms of computational time, and that on a fixed mesh, past a certain number of processes, a time-stepping 
scheme will become dominated by communication between processes and will not scale efficiently. Because LTS3 
requires that the computational domain be decomposed into different classes of cells that require different work-loads, 
LTS3 requires more communication than RK4; as the number of processes increases, communication overhead will 
have a stronger impact on LTS3 than on RK4. For a fair comparison between the two schemes, the runs from Table 2 
were obtained with a number of processes for which communication did not become prevalent for either RK4 or LTS3.

For completeness, in Table 3, we give performance results at higher process counts where there are only 3,000 cells 
per process as opposed to more than 25,000 cells per process as in Figure 9 and Table 2. Here, we see that LTS3 

Figure 9. Speedup in terms of CPU-time obtained using LTS3 over RK4 in 
both the EC and WA configuration. Speedup is calculated as in Equation 4. 
CR is the count ratio and RR is the resolution ratio.

Table 2 
CPU-Time Performance of Fourth-Order Runge-Kutta Method and Third-Order LTS Scheme in Both the EC and WA 
Configuration

DelBay2km DelBay1km DelBay500m DelBay250m DelBay125m

Run-time (s) 6,120 6,840 960 960 960

Number of MPI ranks 2 8 32 64 178

RK4 (s) 57.92 133.26 47.57 95.76 208.58

LTS3 EC (s) 39.10 85.94 32.24 87.98 241.19

Speedup 32.50 35.51 32.23 8.13 −15.63

LTS3 WA (s) 36.94 87.65 30.89 89.39 247.52

Speedup 36.23 34.23 35.05 6.65 −18.67

Note. Speedup is calculated as in Equation 4. The number of cells per process on each mesh is approximately between 25,000 
and 29,000.
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suffers from increased communication time and therefore speed-ups are less dramatic than in Table 2, although LTS3 
still remains faster than RK4 even in this case, for all but one of the meshes it was faster on before. The increased 
communication time in this case is due to each processes not having enough work to do during each time-step, because 
this is a single layer model. In a layered model with n layers, there is approximately n times more work to be done per 
cell per time-step, and it has been shown in Capodaglio and Petersen (2022) that in a shallow water model with 100 
layers, LTS can be run effectively with as little as 500 cells per process without communication becoming dominant.

From the results in Figure 9, there are a few things we learn about efficient mesh design and LTS configuration 
to achieve optimal performance with LTS. First, consider DelBay500 m in the WA configuration where we see 
a speedup of 35%. As noted in Section 2.3.2, we are particularly interested in the count ratio and resolution 
ratio of a mesh when considering the potential for good performance with LTS (see Figure 6). In DelBay500 m, 
the count ratio is 1.28 and the resolution ratio is 60, that is, there are 1.28 times as many coarse cells than fine 
cells, and the smallest fine cells are 60 times smaller than the smallest coarse cells. On the other hand, for the 
DelBay250 m in the WA configuration the speed up is 6.65%. Here, the count ratio is only 0.39 (meaning that 
there are approximately 2.56 times more fine cells than coarse cells) and the resolution ratio is 120.

The DelBay250m WA case has the advantage over the DelBay500m WA case in having a higher resolution 
ratio, but in turn has a much lower count ratio. This means that in the DelBay250m WA case, LTS3 spends the 
majority of its effort time-stepping on the fine region with a time-step that is smaller than the global time-step 
used by RK4, and even though the coarse time-step is much larger than RK4's global time-step, there are fewer 
cells where it is used. This points to the fact that, when designing a mesh with the desire to take advantage of the 
benefits of LTS, one needs to take into account the count ratio so that the mesh is not overloaded with fine time-
step cells. In the case of DelBay125m in both the EC and WA configurations, when the count ratio is especially 
low (0.12 and 0.11 respectively), we see that LTS3 does not perform as well as RK4 in terms of CPU-time. In 
extreme cases such as this where the mesh is predominantly composed of high-resolution cells, the use of an LTS 
scheme does not make sense, and one might benefit from simply using a higher-order global method that admits 
a larger time-step on the mesh's smallest cells.

Another important consideration is the placement of the border between the fine and coarse regions that defines 
which cells use the fine time-step and which use the coarse time-step. In meshes with only two regions of differ-
ing resolutions there is no choice to make, but on meshes such as the ones used here, where there are more 
than two resolutions, there are multiple choices for the placement of the fine region. What this choice should 
be is not always clear. As can be seen in Figure 9, there are some cases where the EC configuration performs 
better and some where the WA configuration performs better. In the case of DelBay250m and DelBay125m, 
the performance in both configurations is not particularly good. However, that does not mean that LTS cannot 
perform well on these meshes. The LTS configurations chosen in this work are experimental and there may be 
other configurations not investigated here that could be used to improve performance on these meshes.

In summary, LTS schemes require that the user consider both the count and resolution ratios as they configure a 
mesh for LTS, but this extra time spent is easily worth the greater than 35% speedups that can be achieved when the 
configuration is done well. As a general rule, one's goal is to maximize both of these parameters. It is particularly 

Table 3 
CPU-Time Performance of RK4 and LTS3 at High Process Counts

DelBay2km DelBay1km DelBay500m DelBay250m DelBay125m

Run-time (s) 6,120 6,840 960 960 960

Number of MPI ranks 16 64 256 512 1,536

RK4 (s) 9.57 20.73 5.96 12.05 23.35

LTS3 EC (s) 8.49 17.93 5.90 38.51 83.90

Speedup 11.31 13.50 1.00 −219.73 −259.36

LTS3 WA (s) 7.75 17.71 5.29 26.19 90.60

Speedup 19.07 14.56 11.23 −117.46 −288.05

Note. The number of cells per process on each mesh is approximately 3,000.
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important that the count ratio not be too low. Figure 6a suggests that a count ratio of 0.2 (1:5) as a rule-of-thumb 
cut-off. The results in Figures 6b and 9 as well as Equation 3 suggest that increasing the resolution ratio has dimin-
ishing returns if it is detrimental to the count ratio. That is, if the vast majority of work is being done with the 
fine time-step, it does not matter if the coarse time-step is many times larger than the fine time-step. To give some 
general advice, the quality of which will doubtlessly vary across applications, it is best to first achieve a reasonable 
value for the count ratio even at the expense of the resolution ratio as long as the resolution ratio can be kept reason-

Figure 10. Sea-surface height solutions from RK4 and LTS3 compared to observed tide gauge data on DelBay125m. Note that the curve corresponding to LTS3 is 
covering the curve corresponding to RK4 in the upper plots. The absolute difference between the two schemes is shown on a log scale in the lower plots.
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ably high. If this is not possible, on may wish to use a method that admits a larger time-step altogether like RK4; 
on a multi-resolution mesh predominately populated by small cells it does not make sense to use a LTS scheme.

3.2. Accuracy

Here we compare the sea-surface height (SSH) predicted by RK4 and LTS3 to observed data. The observed data 
are from NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) gauges and are avail-
able at https://tidesandcurrents.noaa.gov/.

As noted in Section 2.1, there are a number of processes omitted from our model that are likely affecting the 
accuracy of the SSH predictions from our model as compared to observed data. Both wetting and drying cells 
and spatially varying bottom friction are not present in our model, as the implementations of these processes are 
under development. Because of these sources of error in our model, we expect that the choice of time-stepping 
scheme is not the dominate source of error, and so the SSH solutions produced by LTS3 and RK4 should agree 
closely. The results in Figure 10 verify this; the absolute differences between the LT3 and RK4 solutions are, at 
most, on the order of centimeters.

4. Conclusion
We have used a third order LTS scheme (LTS3) to model the storm surge of Hurricane Sandy in the Delaware 
Bay, using meshes of unprecedentedly high resolution for MPAS-O, and have shown that the solutions obtained 
are qualitatively comparable to those produced by the classical four stage, fourth order Runge-Kutta scheme 
(RK4). Furthermore, LTS3 produces these solutions in considerably less computational time than RK4, with 
speedups of up to 35%. This was the first real-world, practical application of LTS schemes in the framework of 
MPAS-O, and will be used to pave the way for further use of LTS within the MPAS framework for the accurate 
capture of coastal physical phenomena requiring high spatial resolution, without compromising the overall speed 
of the simulation. Moving forward, we are interested in using LTS as a tool to enhance the existing split-explicit 
solver that is the standard time-stepping scheme used in MPAS-O for a multi-layered ocean. LTS in its current 
state could be used within the split-explicit solver to solve the barotropic mode, while the baroclinic mode is 
handled as normal. We are also exploring the possibility of adapting LTS3 for use in a layered model, which 
would lead to the possibility of using LTS3 as a baroclinic solver as well.

Data Availability Statement
The source code for the LTS development branch of MPAS-O used here (Capodaglio et al., 2022) can be found 
on GitHub and Zenodo.
 GitHub: https://github.com/jeremy-lilly/MPAS-Model/tree/4e1f5a3cfe78ef01afa07e61f0d46670fdb6c014
 Zenodo: https://doi.org/10.5281/zenodo.6904061

The data generated for this paper (Lilly et al., 2022) are also publicly available on Zenodo. This includes the 
model output used to generate SSH plots, the log files from performance experiments, and an example run direc-
tory which includes all necessary data and configuration options to run the model.
 Zenodo: https://doi.org/10.5281/zenodo.6908349
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