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The Courant–Friedrichs–Lewy (CFL) condition is a well known, necessary condition for the 
stability of explicit time-stepping schemes that effectively places a limit on the size of the largest 
admittable time-step for a given problem. We formulate and present a new local time-stepping 
(LTS) scheme optimized, in the CFL sense, for the shallow water equations (SWEs). This new 
scheme, called FB-LTS, is based on the CFL optimized forward-backward Runge-Kutta schemes 
from Lilly et al. [16]. We show that FB-LTS maintains exact conservation of mass and absolute 
vorticity when applied to the TRiSK spatial discretization [21], and provide numerical experiments 
showing that it retains the temporal order of the scheme on which it is based (second order). We 
implement FB-LTS, along with a certain operator splitting, in MPAS-Ocean to test computational 
performance. This scheme, SplitFB-LTS, is up to 10 times faster than the classical four-stage, 
fourth-order Runge-Kutta method (RK4), and 2.3 times faster than an existing strong stability 
preserving Runge-Kutta based LTS scheme with the same operator splitting (SplitLTS3). Despite 
this significant increase in efficiency, the solutions produced by SplitFB-LTS are qualitatively 
equivalent to those produced by both RK4 and SplitLTS3.

1. Introduction

The computational performance of explicit time-stepping schemes is often limited by the so-called Courant–Friedrichs–Lewy (CFL) 
condition. Given a system of partial differential equations (PDEs) with a finite speed of propagation and a spatial discretization, the 
CFL condition bounds the time-step above in terms of the size of the spatial cells and a quantity related to the speed of the dynamics 
of the problem. Formally, the CFL condition states that it is necessary for stability that

𝜈 = 𝑐 Δ𝑡
Δ𝑥

≤ 𝜈max , (1)

where 𝑐 is a characteristic speed, such as that of a gravity wave, 𝜈 is referred to as the Courant number, and 𝜈max is the maximum 
admittable Courant number, which depends on the model problem itself and the chosen time and space discretizations. For many 
applications, particularly those that require high performance computing (HPC) resources, the size of the desired spatial discretization 
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Δ𝑥 and the speed 𝑐 can vary wildly across the computational domain (e.g. Francois et al. [6], Hoffman et al. [11], Larour et al. [14],

Marsh et al. [17], Xu and Di Vittorio [23], Zhou et al. [24]). In cases like these, traditional explicit global time-stepping schemes are 
forced to satisfy a single, global CFL condition, perhaps enforced by only a small portion of the domain. Local time-stepping (LTS) 
methods provide an answer to this problem by allowing a scheme to take time-steps depending on local values of 𝑐 and Δ𝑥, satisfying 
a local CFL condition rather than a global one. In practice, this means that a domain can be divided into coarse regions where large 
time-steps are used, and fine regions, where smaller time-steps are used. In contrast, a global scheme requires the small time-step 
native to a fine region to be used everywhere, resulting in the need for more evaluations of right-hand-side terms to advance forward 
in time, increasing the overall computational burden.

In this work, we introduce a new LTS scheme for the shallow water equations (SWEs) that has been optimized in the CFL sense. 
This scheme, called FB-LTS, is based on the three-stage, second-order, forward-backward Runge-Kutta scheme FB-RK(3,2) developed 
by Lilly et al. [16]. FB-RK(3,2) is an explicit time-stepping scheme designed for coupled systems of PDEs. In the context of the SWEs, 
the scheme uses a forward-backward (FB) average of available thickness data to advance the momentum equation at each Runge-

Kutta stage. The weights of these FB averages have been optimized to produce a scheme that has maximal 𝜈max when applied to 
the SWEs. It was shown in Lilly et al. [16] that FB-RK(3,2) outperforms a popular three-stage, third-order strong stability preserving 
Runge-Kutta scheme (SSPRK3) in admittable time step by factors roughly between 1.6 and 2.2, making the scheme approximately 
twice as computationally efficient with little to no effect on solution quality. The new FB-LTS scheme introduced here takes advantage 
of the CFL performance of FB-RK(3,2) and combines it with the benefits of a local time-stepping scheme.

The particular algorithm by which regions of the domain using different time steps communicate, which we refer to here as the 
LTS framework, was originally developed by Hoang et al. [10] for use with a TRiSK spatial discretization [21]. TRiSK is a finite 
volume-type spatial discretization made for unstructured, variable-resolution polygonal grids, and is the discretization used in the 
Model for Prediction Across Scales-Ocean (MPAS-O) [19–21]. The application of this LTS framework in the context of a TRiSK spatial 
discretization is a major topic of this work. The scheme presented in Hoang et al. [10] is based on SSPRK3, and is referred to here as 
LTS3. Using FB-RK(3,2) as opposed to SSPRK3, our FB-LTS scheme is able to outperform LTS3 in terms of the size of the admittable 
time-step by factors up to 2.3.

The long-term goal of FB-LTS is to increase the computational efficiency of climate-scale models of the ocean and atmosphere 
running on highly variable resolution meshes, with a particular focus on the Energy Exascale Earth System Model (E3SM) being 
developed by the U.S. Department of Energy [8]. In this work, we implement FB-LTS, along with a certain operator splitting, for 
single-layer configurations in MPAS-Ocean, the ocean component of E3SM. A single-layer ocean is modeled by the SWEs, and serves 
as the starting point for our eventual goal to use FB-LTS in multi-layer, climate-scale models.

This paper is structured as follows. We recall the formulation of FB-RK(3,2) presented in Lilly et al. [16] for completeness, then 
present the FB-LTS scheme. Next, we show that the scheme exactly conserves mass and absolute vorticity in the context of a TRiSK 
spatial discretization. Then, we discuss the details of the implementation of the scheme in MPAS-Ocean, including a discussion of 
an operator splitting approach that we have adopted within the SWEs. Finally, we perform a number of numerical experiments that 
demonstrate the computational efficiency of FB-LTS as compared to LTS3 in MPAS-Ocean. These experiments model the storm surge 
in Delaware Bay caused by hurricane Sandy in 2012, and are an evolution of the simulations explored in [15].

2. Local time-stepping schemes with FB-RK(3,2)

We begin by recalling the FB-RK(3,2) scheme introduced by Lilly et al. [16] for completeness, then introduce a new LTS scheme 
based on this global scheme, called FB-LTS. The primary goal of FB-LTS is to solve the shallow water equations (SWEs) efficiently 
in the CFL sense, i.e. taking time-steps as large as possible. To facilitate discussion of our methods and the SWEs, we introduce the 
nonlinear SWEs on a rotating sphere, given by

𝜕𝐮
𝜕𝑡

+
(
∇× 𝐮+ 𝑓𝐤

)
× 𝐮 = −∇|𝐮|2

2
− 𝑔∇(ℎ+ 𝑧𝑏)

𝜕ℎ

𝜕𝑡
+∇ ⋅ (ℎ𝐮) = 0 ,

(2)

where 𝐮(𝑥, 𝑦, 𝑡) =
(
𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)

)
is the horizontal fluid velocity, 𝑥 and 𝑦 are the spatial coordinates, 𝑡 is the time coordinate, 𝑓 is 

the Coriolis parameter, 𝐤 is the local vertical unit vector, 𝑔 is the gravitational constant, ℎ is the fluid thickness, and 𝑧𝑏 is the height 
of the bottom topography. In Section 4.1, we will introduce a similar shallow water model of particular interest that will showcase 
the performance of FB-LTS in a real-world test case. Throughout this work, we often refer to a given equation for the evolution of 𝐮
as the momentum equation, and a given equation for the evolution of ℎ as the thickness or mass equation.

2.1. FB-RK(3,2)

The time-stepping scheme presented here is an extension of the three-stage, second-order Runge-Kutta time-stepping scheme 
RK(3,2) from Wicker and Skamarock [22] which is used to solve a SWE-like system in MPAS-Atmosphere. This extension of RK(3,2) 
allows the use of the most recently obtained data for the layer thickness to update the momentum data within each Runge-Kutta 
stage. This is done by taking a weighted average of layer thickness data at the old time level 𝑡𝑛 and the most recent RK stage, then 
2

applying this to the momentum equation.



Journal of Computational Physics 520 (2025) 113511J.R. Lilly, G. Capodaglio, D. Engwirda et al.

Fig. 1. Example TRiSK grid from a Voronoi tessellation, where the primal cells are hexagons and the dual cells are triangles centered at primal cell vertices. This is 
the type of spatial discretzation used by MPAS-Ocean. The vector 𝐧𝑒 is normal to cell edge 𝑒 in a fixed, arbitrary direction. Later, in Section 2.4, we define a quantity 
𝑛𝑒,𝑖 as either 1 or -1 so that 𝑛𝑒,𝑖𝐧𝑒 is the outward unit normal vector to cell 𝑖 at edge 𝑒. Then, 𝐭𝑒 = 𝐤 × 𝐧𝑒 .

Consider a general system of ODEs in independent variables 𝑢 = 𝑢(𝑡) and ℎ = ℎ(𝑡) of the form

d𝑢
d𝑡 =Φ(𝑢,ℎ)
dℎ
d𝑡 =Ψ(𝑢,ℎ) ,

(3)

where 𝑡 is the time coordinate. As discussed above, in the context of the SWEs 𝑢 is the fluid velocity and ℎ is the ocean layer thickness. 
The right-hand-side operators Φ and Ψ are referred to as the momentum and thickness (or mass) tendencies respectively. Let 𝑢𝑛 ≈ 𝑢(𝑡𝑛)
and ℎ𝑛 ≈ ℎ(𝑡𝑛) be the numerical approximations to 𝑢 and ℎ at time 𝑡 = 𝑡𝑛. Let Δ𝑡 be a time-step such that 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡. Also, let 
𝑡𝑛+1∕𝑚 = 𝑡𝑛 + Δ𝑡

𝑚
for any positive integer 𝑚. Then, FB-RK(3,2) is given by

ℎ̄𝑛+1∕3 = ℎ𝑛 + Δ𝑡
3
Ψ
(
𝑢𝑛, ℎ𝑛

)
𝑢̄𝑛+1∕3 = 𝑢𝑛 + Δ𝑡

3
Φ
(
𝑢𝑛, ℎ∗

)
ℎ∗ = 𝛽1ℎ̄𝑛+

1∕3 + (1 − 𝛽1)ℎ𝑛

(4a)

ℎ̄𝑛+1∕2 = ℎ𝑛 + Δ𝑡
2
Ψ
(
𝑢̄𝑛+1∕3, ℎ̄𝑛+1∕3

)
𝑢̄𝑛+1∕2 = 𝑢𝑛 + Δ𝑡

2
Φ
(
𝑢̄𝑛+1∕3, ℎ∗∗

)
ℎ∗∗ = 𝛽2ℎ̄𝑛+

1∕2 + (1 − 𝛽2)ℎ𝑛

(4b)

ℎ𝑛+1 = ℎ𝑛 +Δ𝑡Ψ
(
𝑢̄𝑛+1∕2, ℎ̄𝑛+1∕2

)
𝑢𝑛+1 = 𝑢𝑛 +Δ𝑡Φ

(
𝑢̄𝑛+1∕2, ℎ∗∗∗

)
ℎ∗∗∗ = 𝛽3ℎ𝑛+1 + (1 − 2𝛽3)ℎ̄𝑛+

1∕2 + 𝛽3ℎ𝑛 .

(4c)

The weights 𝛽1, 𝛽2, and 𝛽3 are called the forward-backward (FB) weights. These FB-weights can be chosen so as to optimize the 
allowable time-step in the SWEs; it was shown in [16] that taking (𝛽1, 𝛽2, 𝛽3) = (0.531, 0.531, 0.313) increases the admittable time-

step versus RK(3,2) between factors of 1.6 and 2.2 in a number of nonlinear test cases while maintaining second-order accuracy.

2.2. FB-LTS

Here, we introduce FB-LTS in the context of a TRiSK spatial discretization [21], which is a finite volume-type spatial discretization 
made for unstructured, variable-resolution polygonal grids, and is the discretization used in MPAS-Ocean. TRiSK employs C-grid-type 
discretization [2] wherein the mass variable is computed on cell centers and the normal component of velocity is computed on 
cell edges. In MPAS-Ocean, these are Voronoi grids [13,18] consisting primarily of hexagons as the primal mesh, with a dual mesh 
consisting of triangles (Fig. 1).

Given some computational domain, let Ω𝑃 be the set of indices for primal cells (hereafter referred to as just cells, dual cells will 
be referred to specifically as dual cells) and Ω𝐸 be the set of indices for cell edges. We decompose the computational domain into 
two regions, a coarse region, which will be advanced with the coarse time-step Δ𝑡, and a fine region, which will be advanced with 
3

the fine time-step Δ𝑡
𝑀

for some positive integer 𝑀 . Note that the label of fine or coarse does not necessarily reference the size of the 
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Fig. 2. An example mesh with cells and edges labeled for LTS. Blue cells and edges belong to  , light blue cells and edges belong to 𝓁 ⊆  , pink cells and edges 
belong to IF-1 , yellow cells and edges belong to IF-2, and red cells and edges belong to  int. Note that in practice, one often needs more layers of light blue, pink, 
and yellow cells; see Fig. 8 for a practical example. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

spatial discretization, but rather which time-step is used to advance it. The region made up of fine cells is called the fine region while 
the rest of the mesh is called the coarse region. While the sets Ω𝑃 and Ω𝐸 are formally sets of indices, throughout the text we often 
refer to them directly as sets of cells and edges respectively for readability.

Following the notation of Hoang et al. [10], let 𝑃 be the set of cells in the fine region, and 𝑃 be the set of cells in the coarse 
region such that 𝑃 ∪ 𝑃 =Ω𝑃 . In the fine region, we define subsets 𝓁

𝑃
⊆ 𝑃 to be the so-called, interface adjacent fine cells. Let 𝑟

be the radius of the discrete tendency operators for 𝐮 and 𝐡, and define 𝓁
𝑃

for 𝓁 = 1, ⋯ , 5 so that 𝓁
𝑃

contains 𝓁𝑟 layers of cells in 
𝑃 neighboring 𝑃 . For example, in the implementation of FB-LTS described in Section 3 we have 𝑟 = 2, so 5

𝑃
contains 10 layers of 

cells bordering the interface one region (Fig. 8a). These 𝓁
𝑃

subsets are not disjoint with one another, rather 1
𝑃
⊆⋯ ⊆ 5

𝑃
.

In the coarse region, define disjoint subsets IF-1
𝑃

⊆ 𝑃 , IF-2
𝑃

⊆ 𝑃 , and int
𝑃
⊆ 𝑃 such that IF-1

𝑃
∪ IF-2

𝑃
∪ int

𝑃
= 𝑃 . Call IF-1

𝑃
the 

set of interface one cells, IF-2
𝑃

the set of interface two cells, and int
𝑃

the set of interior coarse cells; all these cells advance with the 
coarse time-step. These collections of cells are distributed in the computational domain such that only IF-1

𝑃
cells border 𝑃 cells, 

only IF-2
𝑃

cells border IF-1
𝑃

cells, and only int
𝑃

cells border IF-2
𝑃

cells.

The sets 𝐸 , 𝓁
𝐸

, IF-1
𝐸

, IF-2
𝐸

, int
𝐸

, and 𝐸 give the corresponding sets of cell edges for all the sets of cells described above. An 
edge shared by a cell from 𝑃 and a cell from IF-1

𝑃
belongs to 𝐸 , an edge shared by a cell from IF-1

𝑃
and a cell from IF-2

𝑃
belongs 

to IF-1
𝐸

, and an edge shared by a cell from IF-2
𝑃

and a cell from int
𝑃

belongs to IF-2
𝐸

. In plain language, an edge in dispute between 
two cells of different regions belongs to the region closest to the fine region. This domain decomposition is visualized in Fig. 2; we 
refer to these regions collectively as the LTS regions. Often, we use the notation  or  without a subscript 𝑃 or 𝐸 to refer to the 
whole of the corresponding region, including both cells and edges.

Finally, we assume that the LTS regions are configured in such a way that there are enough layers of IF-1
𝑃

and IF-2
𝑃

cells so that 
the operator stencils of the tendencies do not contain cells more than one region away. For example, the operator stencil on fine cells 
can only contain fine cells and interface one cells, and an operator stencil on interface one cells can only contains fine, interface one, 
and interface two cells, Fig. 8 shows a practical example of this, where the radius of the operator stencil is 𝑟 = 2.

Now, consider the following system of PDE that has been discretized in space

𝜕𝑢𝑒

𝜕𝑡
=Φ𝑒

(
𝐮,𝐡

)
𝜕ℎ𝑖

𝜕𝑡
=Ψ𝑖

(
𝐮,𝐡

)
,

(5)

where 𝐮 = (𝑢𝑒)𝑒∈Ω𝐸 and 𝐡 = (ℎ𝑖)𝑖∈Ω𝑃 . Under a TRiSK spatial discretization, ℎ𝑖 is computed at primal cell centers, and 𝑢𝑒 is the normal 
component of velocity computed at primal cell edges (Fig. 1).

Set a time-step Δ𝑡, and let 𝑀 be some positive integer. Let 𝑡𝑛+1∕𝑚 = 𝑡𝑛 + Δ𝑡
𝑚

for any positive integer 𝑚, and 𝑡𝑛,𝑘 = 𝑡𝑛 + 𝑘 Δ𝑡
𝑀

, and 
𝑡𝑛,𝑘+1∕𝑚 = 𝑡𝑛 +

(
𝑘+ 1∕𝑚

) Δ𝑡
𝑀

(Fig. 3). The FB-LTS scheme proceeds as follows.

1. Coarse Advancement: Compute all three stages of FB-RK(3,2) on cells and edges from 𝑃 and 𝐸 to advance to time 𝑡𝑛+1. Note 
that during this step, we perform calculations on some of the interface adjacent fine cells; recall that if 𝑟 is the radius of the 
discrete tendency operators for 𝐮 and 𝐡, we defined 𝓁

𝑃
for 𝓁 = 1, ⋯ , 5 so that 𝓁

𝑃
contains 𝓁𝑟 layers of cells in 𝑃 neighboring 

IF-1
𝑃

, and that 𝓁
𝐸

was the corresponding sets of edges for 𝓁 = 1, ⋯ , 5. The data computed in these sets is not used to advance 
4

the fine region, but is needed because these cells and edges are in the domain of dependence for the interface regions.
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𝑡

𝑡𝑛

𝑡𝑛+
1∕3

𝑡𝑛+
1∕2

𝑡𝑛+1

Δ𝑡

𝑡𝑛,0

𝑡𝑛,1

𝑡𝑛,2

𝑡𝑛,𝑘

⋮

⋮

𝑡𝑛,𝑀−1

𝑡𝑛,𝑀

𝑡
𝑛,𝑘+ 1

3

𝑡
𝑛,𝑘+ 1

2

Δ𝑡
𝑀

Fig. 3. Visualization and notation for the time-levels used by FB-LTS. In the coarse region (illustrated in the right half of the diagram), 𝑡𝑛+1∕𝑚 = 𝑡𝑛 + Δ𝑡
𝑚

for any positive 
integer 𝑚; first stage data is calculated at time 𝑡𝑛+1∕3 and second stage data is calculated at time 𝑡𝑛+1∕2 . In the fine region (illustrated in the left half of the diagram), 
𝑡𝑛,𝑘 = 𝑡𝑛 + 𝑘 Δ𝑡

𝑀
and 𝑡𝑛,𝑘+1∕𝑚 = 𝑡𝑛 +

(
𝑘+ 1∕𝑚

) Δ𝑡
𝑀

; first stage data is calculated at times 𝑡𝑛,𝑘+1∕3 and second stage data is calculated at times 𝑡𝑛,𝑘+1∕2 for 𝑘 = 0, ⋯ , 𝑀 − 1.

(a) Thickness Stage 1: For 𝑖 ∈ 5
𝑃
∪ IF-1

𝑃
∪ IF-2

𝑃
,

ℎ̃
𝑛+1∕3
𝑖

= ℎ𝑛
𝑖
+ Δ𝑡

3
Ψ𝑖

(
𝐮𝑛,𝐡𝑛

)
ℎ∗
𝑖
= 𝛽1ℎ̃

𝑛+1∕3
𝑖

+ (1 − 𝛽1)ℎ𝑛𝑖 .
(6)

Note that ℎ̃𝑖 denotes what we refer to as uncorrected thickness data. At the end of the scheme we will recalculate the necessary 
uncorrected data on the interface regions using information from the fine region advancement to obtain corrected data.

For 𝑖 ∈ int
𝑃

,

ℎ̄
𝑛+1∕3
𝑖

= ℎ𝑛
𝑖
+ Δ𝑡

3
Ψ𝑖

(
𝐮𝑛,𝐡𝑛

)
ℎ∗
𝑖
= 𝛽1ℎ̄

𝑛+1∕3
𝑖

+ (1 − 𝛽1)ℎ𝑛𝑖 .
(7)

(b) Velocity Stage 1: For 𝑒 ∈ 4
𝐸
∪ IF-1

𝐸
∪ IF-2

𝐸
,

𝑢̃
𝑛+1∕3
𝑒 = 𝑢𝑛

𝑒
+ Δ𝑡

3
Φ𝑒

(
𝐮𝑛,𝐡∗

)
. (8)

Note that 𝑢̃𝑒 denotes what we refer to as uncorrected velocity data. At the end of the scheme we will recalculate the necessary 
uncorrected data on the interface regions using information from the fine region advancement to obtain corrected data.

For 𝑒 ∈ int
𝐸

,

𝑢̄
𝑛+1∕3
𝑒 = 𝑢𝑛

𝑒
+ Δ𝑡

3
Φ𝑒

(
𝐮𝑛,𝐡∗

)
. (9)

(c) Thickness Stage 2: For 𝑖 ∈ 3
𝑃
∪ IF-1

𝑃
∪ IF-2

𝑃
,

ℎ̃
𝑛+1∕2
𝑖

= ℎ𝑛
𝑖
+ Δ𝑡

2
Ψ𝑖

(
𝐮̃𝑛+1∕3, 𝐡̃𝑛+1∕3

)
ℎ∗∗
𝑖

= 𝛽2ℎ̃
𝑛+1∕2
𝑖

+ (1 − 𝛽2)ℎ𝑛𝑖 ,
(10)
5

where ℎ̃𝑛+1∕3
𝑖

∶= ℎ̄𝑛+1∕3
𝑖

and 𝑢̃𝑛+1∕3
𝑒 ∶= 𝑢̄𝑛+1∕3

𝑒 for 𝑖 ∈ int
𝑃

and 𝑒 ∈ int
𝐸

.
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For 𝑖 ∈ int
𝑃

,

ℎ̄
𝑛+1∕2
𝑖

= ℎ𝑛
𝑖
+ Δ𝑡

2
Ψ𝑖

(
𝐮̄𝑛+1∕3, 𝐡̄𝑛+1∕3

)
ℎ∗∗
𝑖

= 𝛽2ℎ̄
𝑛+1∕2
𝑖

+ (1 − 𝛽2)ℎ𝑛𝑖 ,
(11)

where ℎ̄𝑛+1∕3
𝑖

∶= ℎ̃𝑛+1∕3
𝑖

and 𝑢̄𝑛+1∕3
𝑒 ∶= 𝑢̃𝑛+1∕3

𝑒 for 𝑖 ∈ IF-2
𝑃

and 𝑒 ∈ IF-2
𝐸

.

(d) Velocity Stage 2: For 𝑒 ∈ 2
𝐸
∪ IF-1

𝐸
∪ IF-2

𝐸
,

𝑢̃
𝑛+1∕2
𝑒 = 𝑢𝑛

𝑒
+ Δ𝑡

2
Φ𝑒

(
𝐮̃𝑛+1∕3,𝐡∗∗

)
, (12)

where 𝑢̃𝑛+1∕3
𝑒 ∶= 𝑢̄𝑛+1∕3

𝑒 for 𝑒 ∈ int
𝐸

.

For 𝑒 ∈ int
𝐸

,

𝑢̄
𝑛+1∕2
𝑒 = 𝑢𝑛

𝑒
+ Δ𝑡

2
Φ𝑒

(
𝐮̄𝑛+1∕3,𝐡∗∗

)
, (13)

where 𝑢̄𝑛+1∕3
𝑒 ∶= 𝑢̃𝑛+1∕3

𝑒 for 𝑒 ∈ IF-2
𝐸

.

(e) Thickness Stage 3: For 𝑖 ∈ 1
𝑃
∪ IF-1

𝑃
∪ IF-2

𝑃
,

ℎ̃𝑛+1
𝑖

= ℎ𝑛
𝑖
+Δ𝑡Ψ𝑖

(
𝐮̃𝑛+1∕2, 𝐡̃𝑛+1∕2

)
ℎ∗∗∗
𝑖

= 𝛽3ℎ̃𝑛+1𝑖
+ (1 − 2𝛽3)ℎ̃

𝑛+1∕2
𝑖

+ 𝛽3ℎ𝑛𝑖 ,
(14)

where ℎ̃𝑛+1∕2
𝑖

∶= ℎ̄𝑛+1∕2
𝑖

and 𝑢̃𝑛+1∕2
𝑒 ∶= 𝑢̄𝑛+1∕2

𝑒 for 𝑖 ∈ int
𝑃

and 𝑒 ∈ int
𝐸

.

For 𝑖 ∈ int
𝑃

,

ℎ𝑛+1
𝑖

= ℎ𝑛
𝑖
+Δ𝑡Ψ𝑖

(
𝐮̄𝑛+1∕2, 𝐡̄𝑛+1∕2

)
ℎ∗∗∗
𝑖

= 𝛽3ℎ𝑛+1𝑖
+ (1 − 2𝛽3)ℎ̄

𝑛+1∕2
𝑖

+ 𝛽3ℎ𝑛𝑖 ,
(15)

where ℎ̄𝑛+1∕2
𝑖

∶= ℎ̃𝑛+1∕2
𝑖

and 𝑢̄𝑛+1∕2
𝑒 ∶= 𝑢̃𝑛+1∕2

𝑒 for 𝑖 ∈ IF-2
𝑃

and 𝑒 ∈ IF-2
𝐸

.

(f) Velocity Stage 3: For 𝑒 ∈ IF-1
𝐸

,

𝑢̃𝑛+1
𝑒

= 𝑢𝑛
𝑒
+Δ𝑡Φ𝑒

(
𝐮̃𝑛+1∕2,𝐡∗∗∗

)
, (16)

where 𝑢̃𝑛+1∕2
𝑒 ∶= 𝑢̄𝑛+1∕2

𝑒 for 𝑒 ∈ int
𝐸

.

For 𝑒 ∈ int
𝐸

,

𝑢𝑛+1
𝑒

= 𝑢𝑛
𝑒
+Δ𝑡Φ𝑒

(
𝐮̄𝑛+1∕2,𝐡∗∗∗

)
, (17)

where 𝑢̄𝑛+1∕2
𝑒 ∶= 𝑢̃𝑛+1∕2

𝑒 for 𝑒 ∈ IF-2
𝐸

.

2. Interface Prediction: Use the uncorrected data on interface one to obtain predicted values for FB-RK(3,2) data on IF-1
𝑃

and 
IF-1
𝐸

at times 𝑡𝑛,𝑘, 𝑡𝑛,𝑘+1∕3, and 𝑡𝑛,𝑘+1∕2, for 𝑘 = 0, ⋯ , 𝑀 − 1.[
𝐡𝑛,𝑘
𝐮𝑛,𝑘

]
= 𝑘

𝑀

[
𝐡̃𝑛+1
𝐮̃𝑛+1

]
+
(
1 − 𝑘

𝑀

)[
𝐡𝑛
𝐮𝑛

]
(18a)

[
𝐡̄𝑛,𝑘+1∕3

𝐮̄𝑛,𝑘+1∕3

]
= 𝑘

𝑀

[
𝐡̃𝑛+1
𝐮̃𝑛+1

]
+ 1
𝑀

[
𝐡̃𝑛+1∕3

𝐮̃𝑛+1∕3

]
+
(
1 − 𝑘+ 1

𝑀

)[
𝐡𝑛
𝐮𝑛

]
(18b)

[
𝐡̄𝑛,𝑘+1∕2

𝐮̄𝑛,𝑘+1∕2

]
= 𝑘

𝑀

[
𝐡̃𝑛+1
𝐮̃𝑛+1

]
+ 1
𝑀

[
𝐡̃𝑛+1∕2

𝐮̃𝑛+1∕2

]
+
(
1 − 𝑘+ 1

𝑀

)[
𝐡𝑛
𝐮𝑛

]
. (18c)

Additionally, compute the prediction for 𝐡𝑛,𝑘 (18a) one additional time for 𝑘 =𝑀 ; this data will be needed to calculate the third 
stage of FB-RK(3,2) in the fine region with 𝑘 =𝑀 − 1. The coefficients for interpolating the uncorrected data on interface one 
are called the prediction coefficients, and the chosen prediction coefficients given above result in a second order approximation 
to 𝐮 and 𝐡 data at the corresponding times. These coefficients are derived in Appendix A. Additionally, one can observe that 
when 𝑀 = 1, (18) reduces in such a way that the predictions are exactly the corresponding data already computed. This means 
6

that in the case where 𝑀 = 1, FB-LTS is mathematically equivalent to FB-RK(3,2).



Journal of Computational Physics 520 (2025) 113511J.R. Lilly, G. Capodaglio, D. Engwirda et al.

Note that we can also use this data to compute values for 𝐡∗,𝑘 , 𝐡∗∗,𝑘, and 𝐡∗∗∗,𝑘 on interface one cells. For 𝑖 ∈ IF-1
𝑃

,

ℎ
∗,𝑘
𝑖

= 𝛽1ℎ̄
𝑛,𝑘+1∕3
𝑖

+ (1 − 𝛽1)ℎ
𝑛,𝑘

𝑖

ℎ
∗∗,𝑘
𝑖

= 𝛽2ℎ̄
𝑛,𝑘+1∕2
𝑖

+ (1 − 𝛽2)ℎ
𝑛,𝑘

𝑖

ℎ
∗∗∗,𝑘
𝑖

= 𝛽3ℎ
𝑛,𝑘+1
𝑖

+ (1 − 2𝛽3)ℎ̄
𝑛,𝑘+1∕2
𝑖

+ 𝛽3ℎ
𝑛,𝑘

𝑖
.

(19)

3. Fine Advancement: For 𝑖 ∈ 𝑃 and 𝑒 ∈ 𝐸 , advance with FB-RK(3,2) with the fine time-step 𝑀 times. For 𝑘 = 0, ⋯ , 𝑀 − 1,

ℎ̄
𝑛,𝑘+1∕3
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
3𝑀

Ψ𝑖
(
𝐮𝑛,𝑘,𝐡𝑛,𝑘

)
𝑢̄
𝑛,𝑘+1∕3
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

3𝑀
Φ𝑒

(
𝐮𝑛,𝑘,𝐡∗,𝑘

)
ℎ
∗,𝑘
𝑖

= 𝛽1ℎ̄
𝑛,𝑘+1∕3
𝑖

+ (1 − 𝛽1)ℎ
𝑛,𝑘

𝑖

(20a)

ℎ̄
𝑛,𝑘+1∕2
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
2𝑀

Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕3, 𝐡̄𝑛,𝑘+1∕3

)
𝑢̄
𝑛,𝑘+1∕2
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

2𝑀
Φ𝑒

(
𝐮̄𝑛,𝑘+1∕3,𝐡∗∗,𝑘

)
ℎ
∗∗,𝑘
𝑖

= 𝛽2ℎ̄
𝑛,𝑘+1∕2
𝑖

+ (1 − 𝛽2)ℎ
𝑛,𝑘

𝑖

(20b)

ℎ
𝑛,𝑘+1
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
𝑀

Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕2, 𝐡̄𝑛,𝑘+1∕2

)
𝑢𝑛,𝑘+1
𝑒

= 𝑢𝑛,𝑘
𝑒

+ Δ𝑡
𝑀

Φ𝑒
(
𝐮̄𝑛,𝑘+1∕2,𝐡∗∗∗,𝑘

)
ℎ
∗∗∗,𝑘
𝑖

= 𝛽3ℎ
𝑛,𝑘+1
𝑖

+ (1 − 2𝛽3)ℎ̄
𝑛,𝑘+1∕2
𝑖

+ 𝛽3ℎ
𝑛,𝑘

𝑖
.

(20c)

Note that in the FB average in (20c), we already have the data for ℎ𝑛,𝑘+1
𝑖

on IF-1 cells for 𝑘 =𝑀 − 1 because of the extra 
computation of (18a) for 𝑘 =𝑀 .

After looping over 𝑘, set ℎ𝑛+1
𝑖

∶= ℎ𝑛,𝑀
𝑖

and 𝑢𝑛+1
𝑒

∶= 𝑢𝑛,𝑀𝑒 for 𝑖 ∈ 𝑃 and 𝑒 ∈ 𝐸 .

4. Interface Correction: Finally, compute the corrected data at time 𝑡𝑛+1 on interface one and two. For 𝑖 ∈ IF-1
𝑃

∪ IF-2
𝑃

and 
𝑒 ∈ IF-1

𝐸
∪ IF-2

𝐸
,

ℎ𝑛+1
𝑖

= ℎ𝑛
𝑖
+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕2, 𝐡̄𝑛,𝑘+1∕2

)
𝑢𝑛+1
𝑒

= 𝑢𝑛
𝑒
+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

Φ𝑒
(
𝐮̄𝑛,𝑘+1∕2,𝐡∗∗∗,𝑘

)
,

(21)

where 𝑢𝑛,𝑘𝑒 ∶= 𝑢𝑛
𝑒
, ℎ𝑛,𝑘

𝑖
∶= ℎ𝑛

𝑖
, ℎ∗,𝑘

𝑖
∶= ℎ∗

𝑖
, 𝑢̄𝑛,𝑘+1∕3
𝑒 ∶= 𝑢̃𝑛+1∕3

𝑒 , ℎ̄𝑛,𝑘+1∕3
𝑖

∶= ℎ̃𝑛+1∕3
𝑖

, ℎ∗∗,𝑘
𝑖

∶= ℎ∗∗
𝑖

, 𝑢̄𝑛,𝑘+1∕2
𝑒 ∶= 𝑢̃𝑛+1∕2

𝑒 , ℎ̄𝑛,𝑘+1∕2
𝑖

∶= ℎ̃𝑛+1∕2
𝑖

, 
and ℎ∗∗∗,𝑘

𝑖
∶= ℎ∗∗∗

𝑖
for 𝑖 ∈ IF-2

𝑃
and 𝑒 ∈ IF-2

𝐸
. Similarly, 𝑢𝑛,𝑘𝑒 ∶= 𝑢𝑛

𝑒
, ℎ𝑛,𝑘

𝑖
∶= ℎ𝑛

𝑖
, ℎ∗,𝑘

𝑖
∶= ℎ∗

𝑖
, 𝑢̄𝑛,𝑘+1∕3

𝑒 ∶= 𝑢̄𝑛+1∕3
𝑒 , ℎ̄𝑛,𝑘+1∕3

𝑖
∶= ℎ̄𝑛+1∕3

𝑖
, 

ℎ
∗∗,𝑘
𝑖

∶= ℎ∗∗
𝑖

, 𝑢̄𝑛,𝑘+1∕2
𝑒 ∶= 𝑢̄𝑛+1∕2

𝑒 , ℎ̄𝑛,𝑘+1∕2
𝑖

∶= ℎ̄𝑛+1∕2
𝑖

, and ℎ∗∗∗,𝑘
𝑖

∶= ℎ∗∗∗
𝑖

for 𝑖 ∈ int
𝑃

and 𝑒 ∈ int
𝐸

.

Note that the individual terms in the sums in (21) can be calculated and accumulated during the fine advancement step.

This ends the description of the FB-LTS scheme.

2.3. Temporal convergence

Here we describe the results of a numerical experiment in which FB-LTS is  
(
(Δ𝑡)2

)
everywhere, including on interface cells and 

edges (Fig. 4). We calculate the error of a FB-LTS solution against that of the classical, four-stage, fourth order Runge-Kutta method 
(RK4) using a small time-step on a simple model problem.

Consider a non-rotating aquaplanet (i.e. a spherical mesh with no land cells) with constant resting thickness, where the fluid 
velocity is initialized to zero, and the layer thickness is initialized to a Gaussian bump. This produces a simple external gravity wave, 
which is modeled by the system

⎧⎪⎨⎪⎩
𝜕𝐮
𝜕𝑡

= −𝑔∇ℎ
𝜕ℎ

𝜕𝑡
+∇ ⋅ (ℎ𝐮) = 0 .

(22)
7

In these equations 𝐮 is the fluid velocity, 𝑡 is the time coordinate, 𝑔 is the gravitational constant, and ℎ is the ocean thickness.
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Fig. 4. Temporal convergence for FB-LTS on a test case consisting of an external gravity wave on a non-rotating aquaplanet. The time-steps on the horizontal axis are 
the time-steps used in the coarse region, in each case we have 𝑀 = 4. Errors are computed against a reference solution generated by RK4 using a time-step of 10 s.

The root-mean-square (RMS) error is defined as

𝐸RMS =

√∑𝑁

𝑖=1(𝑠𝑖 −𝑚𝑖)2

𝑁
, (23)

where {𝑠𝑖}𝑁𝑖=1 is the discrete reference solution, {𝑚𝑖}𝑁𝑖=1 is the discrete model solution, and 𝑁 is the number of discretization points.

We run this test case with FB-LTS using successively decreasing time-steps. By calculating errors against a reference solution 
generated by RK4 using a time-step of 10 s, we obtain the expected  

(
(Δ𝑡)2

)
temporal convergence rate for both layer thickness 

and normal velocity (Fig. 4).

2.4. Conservation of mass and absolute vorticity

An important property of FB-LTS is that it provides exact conservation of the spatially discrete representation of mass (Theorem 1) 
and the spatially discrete representation of absolute vorticity (Theorem 2) in the cases where there are no boundary conditions (e.g. 
the case of an aquaplanet), or no-flow boundary conditions (i.e. the normal velocity is zero at the boundary). In the context of 
the shallow water equations, the mass variable is the ocean layer thickness ℎ, and absolute vorticity is given by 𝜂 = 𝐤 ⋅ ∇ × 𝐮 + 𝑓 , 
depending on the fluid velocity 𝐮 and the Coriolis parameter 𝑓 . To clarify what is meant by conservation here, we mean that the 
values of globally integrated thickness and globally integrated absolute vorticity are constant in time. We are concerned with the 
discrete counterparts to the conservation equations for these quantities in the continuous case. The mass equation is given by

𝜕ℎ

𝜕𝑡
+∇ ⋅ (ℎ𝐮) = 0 , (24)

and the absolute vorticity equation (obtained by taking the curl of the momentum equation) is given by

𝜕𝜂

𝜕𝑡
+∇ ⋅ (𝜂𝐮) = 0 . (25)

Often, (25) is written in terms of potential vorticity (PV), where PV is given by 𝑞 = 𝜂

ℎ
. The absolute vorticity equation can also be 

written as a thickness-weighted potential vorticity equation,

𝜕 (𝑞ℎ)
𝜕𝑡

+∇ ⋅
(
𝑞(ℎ𝐮)

)
= 0 . (26)

In particular, Ringler et al. [21] formulates the discrete counterpart to (25) in terms of a spatially discrete representation of PV.

Theorem 1. FB-LTS exactly preserves the discrete representation of mass assuming either no boundary conditions or no-flow boundary 
conditions.

Proof. The continuous equation giving conservation of mass for the SWEs is (24), which states that the evolution of the thickness ℎ
depends only on the divergence of the thickness flux. Within a TRiSK framework, this equation is spatially discretized as

𝜕ℎ𝑖

𝜕𝑡
=Ψ𝑖

(
𝐮,𝐡

)
= −1 ∑

𝑛 𝓁 𝐹
(
𝑢 ,𝐡

)
, (27)
8

𝐴𝑖 𝑒∈𝑖
𝑒,𝑖 𝑒 𝑒 𝑒
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where 𝐮 = (𝑢𝑒)𝑒∈Ω𝐸 and 𝐡 = (ℎ𝑖)𝑖∈Ω𝑃 , 𝐴𝑖 is the area of cell 𝑖, 𝑖 is the set of edges of cell 𝑖, 𝓁𝑒 is the length of edge 𝑒, 𝑛𝑒,𝑖 is either 1
or −1, chosen so that 𝑛𝑒,𝑖𝐧𝑒 (see Fig. 1) is the unit outward normal vector to cell 𝑖 at edge 𝑒, and 𝐹𝑒 = 𝐹𝑒

(
𝑢𝑒,𝐡

)
is the signed value of 

the thickness flux at edge 𝑒 in the direction of the unit vector 𝐧𝑒. Note that because of the choice of 𝑛𝑒,𝑖 such that 𝑛𝑒,𝑖𝐧𝑒 is the outward 
normal to cell 𝑖 at edge 𝑒, the quantity 𝑛𝑒,𝑖𝐹𝑒 is the thickness flux leaving cell 𝑖. To show that the total mass in the system at time 𝑡𝑛
is equal to the total mass in the system at time 𝑡𝑛+1 , we will show that any given edge is neither a source nor a sink for mass as it is 
transported across cells. Specifically, we will show this for an edge that is shared by a fine cell and an interface one cell as this is the 
most delicate case; the cases of other types of edges can be shown similarly, though more simply, so we omit them for brevity.

Let 𝑖1 ∈ 𝑃 and 𝑖2 ∈ IF-1
𝑃

be indices for cells 𝑃𝑖1 and 𝑃𝑖2 that have a shared edge 𝑒0 ∈ 𝐸 . Assume that the thickness-fluxes at all 
other edges of 𝑃𝑖1 and 𝑃𝑖2 are zero. We do this with the goal of showing that the mass flux as computed on one side of the edge 𝑒0 is 
the same as computed on the other side of the edge 𝑒0. From this, we can conclude that the edge in question neither adds or subtracts 
mass from the system, giving a local conservation of mass, and from there, global conservation follows. Since we are assuming that 
𝐹𝑒

(
𝑢𝑒,𝐡

)
= 0 for all 𝑒 ≠ 𝑒0, (27) simplifies to

𝜕ℎ𝑖

𝜕𝑡
= −1
𝐴𝑖
𝑛𝑒0 ,𝑖𝓁𝑒0𝐹𝑒0

(
𝑢𝑒0 ,

(
ℎ𝑖1 , ℎ𝑖2

))
, (28)

for 𝑖 = 𝑖1, 𝑖2. The goal is to show that

∫
𝑃𝑖1 ∪𝑃𝑖2

ℎ𝑛+1
𝑖∗

d𝐴 = ∫
𝑃𝑖1 ∪𝑃𝑖2

ℎ𝑛
𝑖∗
d𝐴, (29)

where ℎ𝑖∗ refers to the thicknesses ℎ𝑖1 and ℎ𝑖2 in the respective cells. From here, the central idea is to look at the discretization of 
the thickness on cell 𝑖1 and 𝑖2 at time 𝑡𝑛+1. For cell 𝑖1, which is in the fine region, the thickness at time 𝑡𝑛+1 is given by (20c) with 
𝑘 =𝑀 − 1 in the Fine Advancement step of FB-LTS. For cell 𝑖2, which is in the interface one region, the thickness at time 𝑡𝑛+1 is given 
by (21) in the Interface Correction step. After writing out both ℎ𝑛+1

𝑖1
and ℎ𝑛+1

𝑖2
, we will note that the total flux over their shared edge 

is equal, as computed from both cells. Then, we can integrate both thicknesses over their respective cells to show that the total mass 
in both cells at time 𝑡𝑛+1 is the same as the total mass at time 𝑡𝑛 . On 𝑃𝑖1 , we have that

ℎ𝑛+1
𝑖1

= ℎ𝑛,𝑀
𝑖1

= ℎ𝑛,𝑀−1
𝑖1

+ Δ𝑡
𝑀

Ψ𝑖1
(
𝐮̄𝑛,(𝑀−1)+1∕2, 𝐡̄𝑛,(𝑀−1)+1∕2

)
= ℎ𝑛,𝑀−2

𝑖1
+ Δ𝑡
𝑀

[
Ψ𝑖1

(
𝐮̄𝑛,(𝑀−2)+1∕2, 𝐡̄𝑛,(𝑀−2)+1∕2

)
+Ψ𝑖1

(
𝐮̄𝑛,(𝑀−1)+1∕2, 𝐡̄𝑛,(𝑀−1)+1∕2

)]
⋮

= ℎ𝑛,0
𝑖1

+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

Ψ𝑖1
(
𝐮̄𝑛,𝑘+1∕2, 𝐡̄𝑛,𝑘+1∕2

)
= ℎ𝑛

𝑖1
+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

[
−1
𝐴𝑖1

𝑛𝑒0 ,𝑖1𝓁𝑒0𝐹𝑒0

(
𝑢̄
𝑛,𝑘+1∕2
𝑒0

,

(
ℎ̄
𝑛,𝑘+1∕2
𝑖1

, ℎ̄
𝑛,𝑘+1∕2
𝑖2

))]
. (30)

Note that the values of the thickness fluxes 𝐹𝑒0

(
𝑢̄
𝑛,𝑘+1∕2
𝑒0

,

(
ℎ̄
𝑛,𝑘+1∕2
𝑖1

, ℎ̄
𝑛,𝑘+1∕2
𝑖2

))
depend only on the thickness on cell 𝑖1 in the fine 

region, the thickness on cell 𝑖2 in the interface one region, and the normal velocity at edge 𝑒0, all computed as second stage data 

times 𝑡𝑛,𝑘+1∕2 for 𝑘 = 0, ⋯ , 𝑀 − 1. To simplify notation, from here on we write 𝐹𝑛,𝑘+1∕2
𝑒0

∶= 𝐹𝑒0

(
𝑢̄
𝑛,𝑘+1∕2
𝑒0

,

(
ℎ̄
𝑛,𝑘+1∕2
𝑖1

, ℎ̄
𝑛,𝑘+1∕2
𝑖2

))
. The 

central idea for the proof is that both the fine cell and the interface one cell are using the same flux for each 𝑘 = 0, ⋯ , 𝑀 − 1. Now, 
looking at 𝑃𝑖2 , after completing the correction step (21), we have

ℎ𝑛+1
𝑖2

= ℎ𝑛
𝑖2
+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

Ψ𝑖2
(
𝐮̄𝑛,𝑘+1∕2, 𝐡̄𝑛,𝑘+1∕2

)
= ℎ𝑛

𝑖2
+ Δ𝑡
𝑀

𝑀−1∑
𝑘=0

[
−1
𝐴𝑖2

𝑛𝑒0 ,𝑖2𝓁𝑒0𝐹
𝑛,𝑘+1∕2
𝑒0

]
. (31)

Next, we integrate (30) over the cell 𝑃𝑖1 to get the total mass in the cell at time 𝑡𝑛+1 ,

∫ ℎ𝑛+1
𝑖1

d𝐴 =𝐴𝑖1ℎ
𝑛
𝑖1
+𝐴𝑖1

⎛⎜⎜Δ𝑡𝑀 𝑀−1∑ [
−1
𝐴

𝑛𝑒0 ,𝑖1𝓁𝑒0𝐹
𝑛,𝑘+1∕2
𝑒0

]⎞⎟⎟

9

𝑃𝑖1
⎝ 𝑘=0 𝑖1 ⎠



Journal of Computational Physics 520 (2025) 113511J.R. Lilly, G. Capodaglio, D. Engwirda et al.

=𝐴𝑖1ℎ
𝑛
𝑖1
− Δ𝑡
𝑀
𝑛𝑒0 ,𝑖1𝓁𝑒0

𝑀−1∑
𝑘=0

[
𝐹
𝑛,𝑘+1∕2
𝑒0

]
= ∫
𝑃𝑖1

ℎ𝑛
𝑖1
d𝐴− Δ𝑡

𝑀
𝑛𝑒0 ,𝑖1𝓁𝑒0

𝑀−1∑
𝑘=0

[
𝐹
𝑛,𝑘+1∕2
𝑒0

]
. (32)

Through a similar calculation on 𝑃𝑖2 starting with (31), we get

∫
𝑃𝑖2

ℎ𝑛+1
𝑖2

d𝐴 = ∫
𝑃𝑖2

ℎ𝑛
𝑖2
d𝐴− Δ𝑡

𝑀
𝑛𝑒0 ,𝑖2𝓁𝑒0

𝑀−1∑
𝑘=0

[
𝐹
𝑛,𝑘+1∕2
𝑒0

]
. (33)

Finally, add (32) and (33),

∫
𝑃𝑖1 ∪𝑃𝑖2

ℎ𝑛+1
𝑖∗

d𝐴 = ∫
𝑃𝑖1 ∪𝑃𝑖2

ℎ𝑛
𝑖∗
d𝐴− Δ𝑡

𝑀

(
𝑛𝑒0 ,𝑖1 + 𝑛𝑒0 ,𝑖2

)
𝓁𝑒0

𝑀−1∑
𝑘=0

[
𝐹
𝑛,𝑘+1∕2
𝑒0

]

= ∫
𝑃𝑖1 ∪𝑃𝑖2

ℎ𝑛
𝑖∗
d𝐴, (34)

with the final step being achieved using the fact that 𝑛𝑒0 ,𝑖1 = −𝑛𝑒0 ,𝑖2 . This shows that FB-LTS exactly conserves mass under the TRiSK 
spatial discretization. □

Theorem 2. FB-LTS exactly preserves the discrete representation of absolute vorticity assuming either no boundary conditions or no-flow 
boundary conditions.

Proof. The thickness-weighted PV equation (26) shows that the evolution of the thickness-weighted PV (i.e., absolute vorticity) 
depends only on the divergence of the absolute vorticity flux. Under TRiSK, this is discretized in space as

𝜕𝜂𝑣

𝜕𝑡
=Θ𝑣

(
𝐮,𝐡

)
= −1
𝐴𝑣

∑
𝑒∈𝑣

−𝑡𝑒,𝑣𝑑𝑒𝑞𝑒𝐹⟂
𝑒
, (35)

where 𝐴𝑣 is the area of dual cell 𝑣, 𝑣 is the set of edges of dual cell 𝑣, 𝑡𝑣,𝑖 is an indicator function, either −1 or 1 depending on 
whether the fixed unit vector 𝐭𝑒 = 𝐤 × 𝐧𝑒 (Fig. 1) is outward or inward to dual cell 𝑣 (note that the signs are opposite relative to 𝑛𝑖,𝑒
described above; this convention is used in Ringler et al. [21] and we keep it here for consistency), 𝑑𝑒 is the length of edge 𝑒, 𝑞𝑒 is the 
value of the PV interpolated to edge 𝑒, and 𝐹⟂

𝑒
=𝑒

(
𝐅(𝐮,𝐡)

)
. Here, 𝑒 is the flux mapping operator defined in Ringler et al. [21]

that defines a mapping between the primal flux field 𝐅 =
(
𝐹𝑒

)
𝑒∈Ω𝐸

in the direction normal to primal cell edges and the dual flux field 
𝐅⟂ =

(
𝐹⟂
𝑒

)
𝑒∈Ω𝐸

in the direction tangent to primal cell edges, and therefore normal to dual cell edges. This mapping  from Ringler 
et al. [21] allows for the vorticity equation (25) to be defined on the dual mesh and be consistent with the underlying momentum 
and thickness equations defined on the primal cells; because of this mapping, Ringler et al. [21] asserts that a prognostically obtained 
(i.e., computed from equations derived from PDE) vorticity is equal to a diagnostically obtained (i.e., computed from prognostically 
obtained quantities) vorticity, up to machine precision. Finally, recall that 𝐹𝑒 and 𝐹⟂

𝑒
are thickness fluxes of the form ℎ𝐮, so a quantity 

of the form 𝑞𝐹𝑒 = (𝑞ℎ)𝐮 = 𝜂𝐮 can be understood as a flux of the absolute vorticity.

Therefore, even though in practice we obtain values for the absolute vorticity diagnostically, never computing (35) directly, our 
goal is to show that when (35) is solved prognostically, absolute vorticity is exactly conserved in the sense that the total absolute 
vorticity at time 𝑡𝑛 is equal to the total absolute vorticity at time 𝑡𝑛+1 . This can be done very similarly to the conservation of mass 
argument above, except now we consider dual cells, looking at fluxes normal to dual cell edges (Fig. 5); effectively, because this is 
a conservation equation where the temporal evolution of 𝜂 depends only on a divergence of a flux, it is equivalent to the thickness 
case shown above. As before, we will show this for an edge that is shared by a fine dual cell and an interface one dual cell, though 
calculations for other types of edges are similar.

Let 𝐷 and IF-1
𝐷

be the sets of indices for dual cells, then take 𝑣1 ∈ 𝐷 and 𝑣2 ∈ IF-1
𝐷

so that dual cells 𝐷𝑣1 and 𝐷𝑣2 share a dual 
cell edge that is orthogonal to a primal cells edge 𝑒0 ∈ IF-1

𝐸
. Assume that the thickness-fluxes at all other edges of 𝐷𝑖1 and 𝐷𝑣2 are 

zero. Since we are assuming that 𝐹⟂
𝑒
= 0 for all 𝑒 ≠ 𝑒0, (35) simplifies to

𝜕𝜂𝑣

𝜕𝑡
= 1
𝐴𝑣
𝑡𝑒0 ,𝑣𝑑𝑒0𝑞𝑒0𝐹

⟂
𝑒0
. (36)

See Fig. 5 for an illustration of this situation and note how (36) is similar to (28). From here, the result follows from a calculation 
very similar to the above for the conservation of mass (we omit the details because the calculation is so similar to the above); the 
10

value of 𝜂𝑛+1
𝑣1

is given by summing the fluxes in and out of 𝐷𝑣1 over 𝑀 fine time-steps, and the value of 𝜂𝑛+1
𝑣2

is given by performing 
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Fig. 5. TRiSK grid showing dual cells at the boundary between fine and interface one regions. Blue denotes the fine region and pink denotes the interface one region 
as in Fig. 2.

the interface correction step similar to (21). Then, we use the fact that 𝑡𝑒0 ,𝑣1 = −𝑡𝑒0,𝑣2 to conclude that the total flux entering 𝐷𝑣1 is 
equal to the total flux exiting 𝐷𝑣2 . This shows that a given edge is neither a source or a sink for absolute vorticity and therefore that 
the absolute vorticity is conserved globally. □

Remark 1. Both Ringler et al. [21] and Hoang et al. [10] state that TRiSK and LTS3, respectively, conserve globally integrated PV. 
This requires the clarification that in this case, conservation means that the value of the volume integral of PV is constant in time, 
as opposed to the area integral as in the case for conservation of thickness and absolute vorticity. FB-LTS also conserves PV in this 
sense; this follows from Theorem 2 and the fact that 𝑞𝑣∗ is independent of the vertical position. That is,

∫ 𝑞𝑣∗ d𝑉 = ∫ ℎ𝑣∗𝑞𝑣∗ d𝐴

= ∫ 𝜂𝑣∗ d𝐴. (37)

Note that since PV is defined on dual cells, this requires that the thickness be defined on dual cells as well. TRiSK defines an auxiliary 
thickness equation defined on dual cells in such a way that the dual cell thickness and the primal cell thickness are equivalent with 
each other in the sense that a prognostically obtained dual cell thickness is equal to the dual cell thickness obtained diagnostically 
by an interpolation of the primal cell thickness up to machine precision [21].

Remark 2. It is important to note that while Theorem 1 is proven in the context of a TRiSK spatial discretization, the result will hold 
for any conservative finite volume scheme. The result depends only on the fact that the fluxes as computed from either side of an edge 
shared by a fine and interface one cell are equal. In contrast, the proof of Theorem 2 does depend on the TRiSK scheme, specifically 
on the flux mapping operator 𝑒 described in the proof above.

3. Implementation in MPAS-Ocean

Here, we describe some particulars relating to the implementation of the FB-LTS and LTS3 codes in MPAS-Ocean and compare 
to the now outdated implementation of LTS3 used in Lilly et al. [15] and Capodaglio and Petersen [5]. While the discussion in this 
section is largely in the context of MPAS-Ocean, the methods described can be applied in general. In particular, any implementation 
of FB-LTS would likely benefit from a load balancing procedure similar to that described at the end of Section 3.1. Similarly, the 
operator splitting from Section 3.2 has no intrinsic connection to MPAS-Ocean, but rather coincidentally helps to overcome a particular 
limitation of the MPAS-Ocean tendency routines.

3.1. MPI domain decomposition and parallelization

Balancing load and achieving efficient parallelization are non-trivial tasks when it comes to local time-stepping due to the asyn-

chronous way in which the solution is advanced, causing an inherent load imbalance that needs to be properly addressed with ad-hoc 
implementation strategies. In Capodaglio and Petersen [5] and Lilly et al. [15], the authors obtained load balancing and parallel 
scalability by assigning to each MPI rank a well balanced number of cells from the coarse, interface, and fine LTS regions. This means 
that these three regions were treated as separate sets and each was partitioned across MPI ranks in a well balanced way. This process 
required the interface one and interface two regions to be augmented with additional cells in order for the MPI partition to provide at 
least 100 interface cells per rank, as a rule of thumb. Since the correction terms for the interface are computed during the sub-stepping 
procedure to minimize storage requirements, the proper number of additional interface cells needed to be tuned for best performance, 
11

as shown in Capodaglio and Petersen [5] and Lilly et al. [15].
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The reason for treating the interface cells as a separate entity when it comes to load balancing was motivated by the need to 
address another crucial feature to guarantee computational performance, which is the ability to compute the right hand side terms 
only on the specific regions in which the solution will be advanced. A limitation of the underlying MPAS-Ocean framework is that 
the tendency routines only calculate tendency terms globally, with no way to only perform calculations on a given subset of cells. 
That is, if a given MPI rank owned both fine and coarse cells, it would not be possible to calculate tendencies only on fine cells, or 
only on coarse cells. In our previous works, we overcame this limitation by assigning each MPI rank multiple memory blocks, and 
looping over each memory block in serial. Each memory block would only contain one type of cell (fine, interface, or coarse), so 
when the tendency terms were called, the tendencies would only be calculated on those cells. Then, each MPI rank was assigned 
three memory blocks, each containing fine, interface, and coarse cells respectively. This allowed us to implement the LTS algorithms 
without changes to the underlying MPAS-Ocean framework.

Although convenient and effective, this procedure introduced a major issue in terms of parallel communication: Each memory 
block had its own halo cells on which parallel communication with other MPI ranks occurred, hence the communication cost of 
running with 𝑛 tasks was actually that of 3𝑛 tasks. As outlined in Table 3 from Lilly et al. [15], the gains of using local time-stepping 
over a global time-stepping method were significantly reduced due to these communication issues becoming predominant when the 
number of cells per MPI rank became small, with 3000 cells per rank being observed as an approximate minimum for acceptable 
performance.

For the current work, the LTS3 and FB-LTS algorithms have been implemented in MPAS-Ocean within the main branch of the 
Energy Exascale Earth System Model (E3SM) [8]. This new implementation abandons the use of multiple memory blocks per MPI 
rank, which leads to two primary benefits. First, the amount of parallel communication does not grow by a factor of 3, hence the 
benefits of using local time-stepping still persist when the number of cells per MPI rank becomes small. Second, we no longer assign 
one block to each LTS region, hence we no longer need to tune the number of additional cells in the interface layers, and only use the 
minimum number of cells in the interface layers required by the numerical algorithms. Concerning the load balancing procedure, the 
mesh cells are divided in two sets, one containing the cells in the fine LTS region, and the other containing the coarse and interface 
LTS regions. Then, each MPI rank is assigned a well balanced number of cells from each set. That is, each MPI rank is has a well 
balanced number of both fine and coarse cells within the same memory block. The interface cells are not treated as a separate entity 
anymore on the load balancing procedure and are considered coarse cells, since the coarse time-step is used to advance the solution 
on them.

Discontinuing the use of multiple memory blocks per MPI rank required us to find a computationally efficient way to compute 
tendency terms only on the specific LTS region on which the solution is to be advanced. This has been achieved in part via an operator 
splitting approach, as described in the next section.

3.2. Operator splitting

It is well known that the ocean admits dynamics on a vast range of time-scales, with the most rapid motions being up to two 
orders of magnitude faster than the slowest. To account for this, climate-scale ocean models employ a barotropic/baroclinic splitting 
in which the fast 2D motions modeled by the vertically integrated barotropic subsystem are solved separately from the slow 3D 
motions in the baroclinic subsystem [9]. This fast barotropic subsystem is essentially the SWEs (2); however, even within this fast 
subsystem, there are still a range of time-scales at play that are often solved monolithically. The most rapid motions in a shallow 
water system are due to external gravity waves, which propagate at a rate of 

√
𝑔𝐻 , where 𝐻 is the fluid resting depth. This means 

that, assuming an average ocean depth of 4000 m, gravity waves propagate at a rate of approximately 200 m s−1. This is two orders 
of magnitude faster than Eulerian current velocities which are at most a few meters per second.

With the goal of exploiting this range of time-scales for computational performance, we introduce a certain operator splitting for 
the SWEs. We identify the external gravity-wave subsystem as fast and the remaining system, including the nonlinear momentum 
advection and forcing, as slow. The external gravity-wave subsystem is given by removing all forcing terms from the momentum 
equation except for the pressure gradient term, e.g. (22). In practice, the splitting works by evaluating the slow tendencies at time 
𝑡 = 𝑡𝑛 and then skipping their update during the subsequent time-stepping procedure. In particular, with a time discretization of the 
momentum equation in (3), the right hand side term Φ at a generic time 𝑡∗, i.e. Φ 

(
𝐮(𝑡∗), ℎ(𝑡∗)

)
, is approximated as

Φ
(
𝐮(𝑡∗), ℎ(𝑡∗)

)
≈Φfast

(
𝐮(𝑡∗), ℎ(𝑡∗)

)
+Φslow

(
𝐮(𝑡𝑛), ℎ(𝑡𝑛)

)
. (38)

The approximation above can be seen as an additive Lie-Trotter splitting. Note that because the external gravity-wave system is 
treated as fast, there is no splitting within the thickness equation, only in the momentum equation. That is,

Φfast(𝐮, ℎ) = −𝑔∇(ℎ+ 𝑧𝑏)

Ψfast(𝐮, ℎ) = −∇ ⋅ (ℎ𝐮) .
(39)

We have made this choice of the fast terms motivated by the fact that the external gravity-waves are the fastest motions within the 
SWEs and impose the tightest CFL restriction. A notable exclusion from the fast terms is the Coriolis term, which is well known to 
cause stability issues. In particular, the Coriolis term influences the dispersion of Poincaré waves whose frequencies are close to the 
inertial frequency. It is possible that the omission of the Coriolis term from the fast terms could result in related instability. Whether 
12

the particular choice of the fast terms in (39) is optimal is an open question.
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As a result of this splitting, the more computationally expensive slow terms are only evaluated once per coarse time-step, saving a 
significant number of floating point operations and MPI communication calls. This splitting does introduce a first-order error into the 
temporal local truncation error of our models, but we will show in Section 4.1 that the quality of the solution is not affected (Fig. 6). 
This is due to the fact that in complex real-world applications driven by observed data, like the one shown in Section 4.1, errors 
coming from the spatial discretization, model parameterization, and observed data are dominant. Further, the slow dynamics evolve 
on the order of hours, so taking time-steps on the order of hundreds of seconds, as in Section 4.1, does not introduce meaningful 
errors.

As mentioned above in Section 3.1, the splitting also helps with the practical concern of needing a way to restrict tendency 
calculations to certain regions of a mesh for a LTS scheme. MPAS-Ocean tendency routines are very complex and further rely on 
other routines that compute diagnostic quantities. In order to efficiently compute tendencies only on given LTS regions without using 
multiple memory blocks, one would need to reimplement the MPAS-Ocean tendency routines from scratch in a way that allows the 
domain of the calculation to be restricted. This would have been impractical to do for the full tendency routines, but because of 
the operator splitting, we only need to reimplement the parts of the routines for the fast terms. The versions of FB-LTS and LTS3 
implemented in E3SM are implemented in the context of this operator splitting. In the numerical experiments in Section 4, we use the 
labels SplitFB-LTS and SplitLTS3 to refer to these schemes with this operator splitting. In the convergence test from Section 2.3, the 
same implementation of FB-LTS was used, but on a problem with all the slow terms disabled. This effectively removes the operator 
splitting, so FB-LTS shows the expected second-order convergence.

A final point of interest is how this splitting effects the CFL performance of the model. That is, we are interested in how this 
splitting effects the size of the admittable time-step in both the fine and coarse regions. In Section 4.2, we show two cases, one in 
which the CFL performance is not effected and one in which it is, and provide evidence that this depends on the ratio of the resolution 
of cells in the coarse region to the resolution of cells in the fine region.

4. Numerical experiments

Here, we present a series of numerical experiments that showcase the performance of SplitFB-LTS as compared to SplitLTS3, 
SplitFB-RK(3,2), and RK4. As described in Section 3.2, both LTS3 and FB-LTS are used in the context of the first-order operator 
splitting of the fast/slow subsystems within the SWEs. Additionally, note that the SplitFB-RK(3,2) scheme is obtained by running 
SplitFB-LTS with a uniform time-step everywhere on the mesh, i.e. taking 𝑀 = 1. For these experiments, we model the storm surge 
caused by hurricane Sandy in and around Delaware Bay off the eastern coast of the United States, running on meshes that have been 
regionally refined to very high resolutions (2 km and 125 m) around Delaware Bay (Table 1 and Fig. 7).

4.1. Hurricane model

The momentum and thickness equations for the hurricane Sandy model are given by

𝜕𝐮
𝜕𝑡

+
(
∇× 𝐮+ 𝑓𝐤

)
× 𝐮 =−∇𝐾 − 1 − 𝛽

𝜌0
∇𝑝𝑠 − 𝑔∇

(
𝜉 − 𝜉𝐸𝑄 − 𝛽𝜉

)
− 𝜒 𝐮

𝐻
− D

|𝐮|𝐮
ℎ

+ W

||𝐮W − 𝐮|| (𝐮W − 𝐮
)

ℎ

𝜕ℎ

𝜕𝑡
+∇ ⋅ (ℎ𝐮) = 0 ,

(40)

where 𝐮 is the horizontal fluid velocity, 𝑡 is the time coordinate, 𝑓 is the Coriolis parameter, 𝐤 is the local vertical unit vector, 𝐾 = |𝐮|2
2

is the kinetic energy per unit mass, 𝛽 is the self-attraction and loading coefficient [1], 𝜌0 is the (constant) fluid density, 𝑝𝑠 is the 
surface pressure, 𝑔 is the gravitational constant, 𝜉 is the sea-surface height perturbation, 𝜉EQ is the sea-surface height perturbation 
due to equilibrium tidal forcing [3], 

𝐻
is a spatially varying internal tide dissipation coefficient [12], 𝜒 is a scalar tuning factor 

optimized for barotropic tides response [4]. 𝐻 is the resting depth of the ocean, ℎ is the total ocean thickness such that ℎ =𝐻 + 𝜉, 
D is the bottom drag coefficient, W is the wind stress coefficient [7], and 𝐮W is the horizontal wind velocity. Here, the thickness 
equation is the conservation of volume for an incompressible fluid, where the volume is normalized by the cell area, which is constant 
in time. Additionally, note that our model does not employ a wetting and drying algorithm. There is an existing implementation of 
a wetting and drying algorithm for both RK4 and SplitLTS3, but not for SplitFB-LTS, so we opt to turn wetting and drying off for all 
methods. Applying such an algorithm would likely improve our models’ comparisons to observations, but as our primary focus is the 
comparison of performance and accuracy between individual time-stepping methods, leaving wetting and drying off is sufficient for 
our purposes. In future work, we plan to implement a wetting and drying algorithm for SplitFB-LTS.

The LTS algorithms implemented in MPAS-Ocean use the operator splitting described in Section 3.2; for this hurricane model the 
terms treated as fast in (40) are

Φfast(𝐮, ℎ) = −𝑔∇(𝜉 − 𝛽𝜉)
(41)
13

Ψfast(𝐮, ℎ) = −∇ ⋅ (ℎ𝐮) .
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Fig. 6. The sea-surface height solution produced by the hurricane Sandy model using LTS3 both with and without the operator splitting described in Section 3.2. The 
unsplit solution is covered by the split solution, showing the split model produces a solution of the same quality.

That is, the external gravity wave subsystem is treated as fast. To show that this splitting does not degrade the quality of the model 
solution, we run the hurricane model using the unsplit implementation of LTS3 from the now outdated version of MPAS-Ocean used 
in Lilly et al. [15], and the current version (Fig. 6).

We consider two meshes, DelBay2km and DelBay125m, shown in Fig. 7 and described in Table 1. These meshes are similar 
to those by the same names from Lilly et al. [15], but have slight differences due to updates to mesh generation libraries. Both 
meshes highly resolve Delaware Bay, then smoothly vary in resolution out to a low global background resolution. These meshes were 
chosen to highly resolve the hurricane itself while controlling the overall number of cells in the global mesh, making the potential 
benefits of local time-stepping schemes obvious. The simulations are run for 24 simulated-days; starting on 10/10/2012 and ending 
on 11/03/2012.

Related to these meshes, there are two parameters which are important to understanding the performance of our LTS schemes. 
What we refer to as the count ratio is the ratio of the number of coarse cells to the number of fine cells in the mesh, i.e. a count ratio 
greater than one means that the mesh contains more cells using the coarse time-step than the fine time-step. The resolution ratio is the 
ratio of the cell width of the coarse cells to the cell width of the fine cells. In the case where there are cells of multiple resolutions in 
either region, as is the case in our meshes, we consider the smallest value of cell width in a given region as it is the smallest cell that 
restricts the size of the time-step admittable in that region. The higher the resolution ratio, the higher we expect 𝑀 to be, the ratio 
between the fine and coarse time-step. See Lilly et al. [15] for further details about this kind of analysis, Fig. 6 and the surrounding 
discussion in particular.

Both SplitLTS3 and SplitFB-LTS were configured to use the same configuration of the LTS regions, taking the fine region (the 
region where the fine time-step is used) to be around the Delaware coast and the coarse region (the region where the coarse time-step 
is used) to be the rest of the globe as pictured in Fig. 7a. One can note that the FB-LTS scheme uses more cells labeled as interface 
adjacent fine cells than LTS3; these are the cells denoted as 5

𝑃
cells in Section 2.2. These cells are advanced with the same fine 

time-step as the rest of the fine region, they are only differentiated within the FB-LTS and LTS3 algorithms because these cells require 
a small number of additional computations in order to obtain needed data on the interface one and two regions during the coarse 
advancement step of both methods. In order to obtain the data needed to perform the interface one prediction step, we need to obtain 
uncorrected data on interface one at time 𝑡𝑛+1. FB-RK(3,2) takes three stages to obtain data at time 𝑡𝑛+1, while SSPRK3 produces a 
prediction for this data with its first stage; as a result the domain of dependence for interface one cells to obtain this needed data is 
larger for FB-LTS. One can also note that, as described in Section 2.2, the FB-LTS algorithm requires these extra computations on a 
decreasing subset of these interface adjacent fine cells as the method progresses through the coarse advancement step, starting with 
5
𝑃

, then 4
𝑃

, then 3
𝑃

, et cetera. In order to decrease the complexity of the FB-LTS implementation in MPAS-Ocean we opt not to 
shrink this region and instead perform these extra calculations on all the interface adjacent cells pictured in Fig. 2. This has no effect 
on the numerical scheme itself as the unneeded data is simply thrown away, and the penalty to the computational performance of 
the implementation is negligible.

Further, note that the configuration of the LTS regions in Fig. 8 assumes that the radius of the tendency operators for both the 
velocity and the thickness is 𝑟 = 2. If one were to add additional terms to the fast subsystem treated with LTS, the number of layers 
of interface cells could increase. For example, in TRiSK, the radius of a biharmonic turbulence closure (“del4”) for the momentum 
equation is 𝑟 = 3. Adding this to the fast subsystem would increase the number of layers of interface 1 and interface 2 cells to three, 
and the number of interface adjacent fine cells to 15.

The time-steps used on each mesh by each time-stepping scheme for performance tests are given in Table 1. These time-steps were 
obtained experimentally by running the model at increasing time-steps until it becomes unstable and selecting the largest time-steps 
for which it is stable. In the case of DelBay2km, the model is stable at the reported time-steps for the entire 24 simulated-day duration 
of the hurricane simulation. Because of the greatly increased computational cost of running the model on DelBay125m, the reported 
time-steps are obtained by running for one simulated-day starting from an initial condition given by the model state after three 
simulated days (10/13), which is when the tidal dynamics stabilize after spinning up from rest. When finding the fine and coarse 
time-steps in this way, there are two possible approaches; the fine and coarse time-steps must differ by an integer factor of 𝑀 such 
that Δ𝑡fine =

Δ𝑡coarse

𝑀
, so they can be obtained in different orders. One could find the largest time-step admittable on the coarse region 
14

of the mesh then find the smallest value of 𝑀 that gives an admittable fine time-step, or first find the largest admittable fine time-step 
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Fig. 7. The DelBay2km and DelBay125m meshes as described in Table 1 for the hurricane Sandy test case. Note that these are global meshes and that parts of the 
globe not pictured here use the background resolutions shown in Table 1.

then the largest value of 𝑀 that gives an admittable coarse time-step. This has the result of the time-step in one region or the other 
not technically being maximal. For both DelBay2km and DelBay125m, we opt to first maximize the time-step in the fine region, then 
find the largest admittable value of 𝑀 .

Looking at the CFL estimates given by Fig. 7b, we see good agreement between the approximated maximum time-steps and the 
experimentally obtained maximal time-steps from Table 1 on DelBay2km. On this mesh, our methods take time-steps between 20 s 
and 46 s in the fine region, and between 60 s and 138 s in the coarse region. On DelBay125m, we have similarly good agreement in 
15

the fine region, taking time-steps between 1 s and 2 s. However, in the coarse region, our LTS schemes are taking time-steps smaller 
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Fig. 8. Configurations for the LTS regions for FB-LTS and LTS3 as shown on DelBay2km. The LTS regions are configured similarly on DelBay125m.

than predicted by the CFL estimates. We should be taking time-steps on the order of 30 s in the coarse region, but coarse time-steps 
for both LTS schemes are 4 s instead. As discussed in Section 4.2, we find that this discrepancy is due to the operator splitting.

Further, the CFL estimates from Fig. 7b show how the restriction on the time-step depends on both cell size Δ𝑥 and resting bottom 
depth 𝐻 . In particular, note that the tightest bounds are not imposed by the smallest cells deep in Delaware bay, but instead by 
mid-sized cells on the continental shelf. This points to the potential value of using CFL estimates like these as criteria by which the 
fine and coarse regions are defined. While the LTS regions as configured here (Fig. 8) are effective, they are not necessarily optimal; it 
is likely that a more complex selection of the fine and coarse regions could be made that would further increase the speedup obtained 
by LTS. For instance, a configuration based on the CFL distribution shown in Fig. 7b. Such a configuration is subject of current work 
and will be explored in a future paper.

4.2. Computational performance

In order to demonstrate the computational performance of SplitFB-LTS, we run the hurricane Sandy model using RK4, SplitFB-

RK(3,2), SplitLTS3, and SplitFB-LTS on both DelBay2km and DelBay125m. For each mesh, we run the model for a number of simulated-

seconds equal to a common multiple of the time-steps used by each scheme. We measure the speedup by taking the ratio of the 
CPU-time for the slower scheme to that of the faster scheme, that is,

speedup = slower scheme CPU-time

faster scheme CPU-time
. (42)

For example, the speedup for SplitFB-LTS versus RK4 is given by

speedup vs. RK4 = RK4 CPU-time

SplitFB-LTS CPU-time
. (43)

On DelBay2km, SplitFB-LTS outperforms RK4 by a factor of 10.08 and outperforms SplitLTS3 by a factor of 2.27, and on Del-

Bay125m FB-SplitLTS outperforms RK4 by a factor of 5.13 and outperforms SplitLTS3 by a factor of 1.32 (Table 2). The speedups 
obtained on DelBay125m are less stark than those obtained on DelBay2km; this is explained in part by the CFL issue introduced by 
the splitting as discussed further below. However, one must also consider that the count ratio on DelBay125m is much smaller than 
that on DelBay2km. On DelBay125m, most of the mesh consists of fine cells, where the advantage of SplitFB-LTS versus RK4 is less 
than on the coarse cells. Because of this, it is expected that the speedup on DelBay125m would be less than that on DelBay2km.

Previous to the implementation of SplitLTS3 and SplitFB-LTS in the MPAS-Ocean code-base, RK4 scheme was the method of choice 
for single-layer configurations like that used in our hurricane model, so the speedup versus RK4 achieved by both LTS schemes is 
significant and points to the value of local time-stepping schemes and the operator splitting described in Section 3.2 for efficiency 
of ocean simulations. SplitFB-LTS further improves on the speedup achieved by SplitLTS3 by taking advantage of the CFL optimized 
scheme on which it is based, and it will be shown in Section 4.3 that this additional speedup does not incur a penalty to the quality 
of the model solution.

We can also compare the results from Table 2 to results from Table 2 from Lilly et al. [15]. On DelBay2km, the previous unsplit 
implementation of LTS3 only outperformed RK4 by a factor of 1.48, while on DelBay125m unsplit LTS3 was slower than RK4 by a 
factor of 1.16. One should keep in mind that there multiple factors involved in the difference in performance between these two cases; 
16

the new schemes benefit from less MPI communication overhead due to the improved domain decomposition paradigm described in 
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Table 1

Relevant parameters for each mesh and LTS scheme used in performance experi-

ments. The count ratio is the ratio of the number of coarse cells to the number of 
fine cells in the mesh. The resolution ratio is the ratio of the cell width of the coarse 
cells to the cell width of the fine cells. For both meshes, the fine region includes 
Delaware Bay, the Delaware coast, and the Eastern US coast. The coarse region 
includes the Western Atlantic and the rest of the globe (global background).

DelBay2km DelBay125m

Grid Cell Width (km)

Global background 120 30

Western Atlantic 30 15

Eastern US coast 10 0.625

Delaware coast 5 0.3125

Delaware Bay 2 0.125

Mesh Parameters

Number of cells 58,141 4,617,372

Count ratio 1.92 0.12

Resolution ratio 15 120

Time-Steps

RK4

Δ𝑡global (s) 34 2

SplitLTS3

Δ𝑡fine (s) 20 1

Δ𝑡coarse (s) 60 4

𝑀 3 4

SplitFB-LTS

Δ𝑡fine (s) 46 2

Δ𝑡coarse (s) 138 4

𝑀 3 2

Time-Step Ratios
Δ𝑡FB-LTS

fine ∕Δ𝑡RK4
global

1.35 1.00
Δ𝑡FB-LTS

fine ∕Δ𝑡LTS3
fine

2.30 2.00
Δ𝑡FB-LTS

coarse∕Δ𝑡LTS3
coarse

2.30 1.00

Table 2

CPU-time performance of RK4, SplitFB-RK(3,2), SplitLTS3, and SplitFB-LTS on 
DelBay2km and DelBay125m. Each reported time above is the average of indi-

vidual runs, to account for conditions on the machine. The run-times were chosen 
as common multiples of the time-steps used be each scheme as reported in Table 1. 
On each mesh, the global time-steps used by SplitFB-RK(3,2) are equal to the fine 
time-steps used by SplitFB-LTS.

DelBay2km DelBay125m

run-time (hh:mm:ss) 06:31:00 00:10:00

number of MPI ranks 32 128

RK4 (s) 26.07 186.02

SplitFB-RK(3,2) (s) 6.72 58.78

speedup vs. RK4 3.88 3.16

SplitLTS3 (s) 5.86 47.85

speedup vs. RK4 4.45 3.89

speedup vs. SplitFB-RK(3,2) 1.15 1.23

SplitFB-LTS (s) 2.59 36.26

speedup vs. RK4 10.08 5.13

speedup vs. SplitFB-RK(3,2) 2.60 1.62

speedup vs. SplitLTS3 2.27 1.32

Section 3.1 and the operator splitting described in Section 3.2 in particular. Regardless, this shows the strong progression of efforts 
to increase the computational efficiency of these SWE solvers.

As one of the primary results, we take some additional time to break-down and understand the factor 10.08 speedup obtained by 
SplitFB-LTS versus RK4 on DelBay2km (Fig. 9). There are three distinct sources of speedup that are contributing to this result. First, 
moving from RK4 to (unsplit) FB-RK(3,2). Second, moving from FB-RK(3,2) to SplitFB-RK(3,2). Third, moving from SplitFB-RK(3,2) 
17

to SplitFB-LTS. Call these speedups 𝐴, 𝐵, and 𝐶 respectively. We get an estimate for 𝐶 from Table 2 as 𝐶 ≈ 2.60. We cannot get 



Journal of Computational Physics 520 (2025) 113511J.R. Lilly, G. Capodaglio, D. Engwirda et al.

Fig. 9. A visualization of the sources of the speedup obtained by SplitFB-LTS versus RK4 on DelBay2km. The analysis performed to obtain the estimated speedup 
contributed by each step can be found in the text of Section 4.2.

direct experimental estimates for 𝐴 and 𝐵 since there is no unsplit implementation of FB-RK(3,2) in MPAS-Ocean. However, we can 
estimate both values through a simple analysis. First, we can estimate 𝐴 by looking at the size of the time-steps used by RK4 and FB-

RK(3,2) relative to the number of Runge-Kutta stages in each scheme. On DelBay2km, RK4 takes a global time-step of 34 s over four 
RK stages, so RK4 advances 34∕4 = 8.5 seconds per RK stage. Assuming that FB-RK(3,2) uses the fine time-step used by SplitFB-LTS, 
it uses a global time-step of 46 s over three RK stages, so it advances 46∕3 ≈ 15.33 seconds per RK stage. Taking these two quantities 
together, we estimate that 𝐴 ≈ 15.33∕8.5 ≈ 1.80. Lastly, since we know that 𝐴𝐵𝐶 = 10.08, we simply estimate 𝐵 ≈ 10.08∕𝐴𝐶 ≈ 2.15. From 
this, we see that each of the three algorithmic developments considered here contribute significantly to the overall speedup obtained. 
Additionally, we give some supplementary analysis related to the speedup 𝐶 and the relative computational cost of the slow and fast 
tendencies in Appendix B.

As noted in Section 3.2, we are also interested in how the operator splitting affects the CFL performance of our LTS schemes. On 
DelBay2km, the results suggest that the CFL performance of both SplitLTS3 and SplitFB-LTS is not affected by the splitting. That is, 
the restriction placed on the maximum admittable time-steps, as reported in Table 1, are enforced by the terms treated as fast. In 
this case SplitFB-LTS is taking time-steps 2.3 times larger than SplitLTS3 in both the fine and coarse regions, as we expect from Lilly 
et al. [16]. Contrast this with the time-steps used on DelBay125m; SplitFB-LTS outperforms SplitLTS3 in CFL efficiency by a factor 
of 2 in the fine region but both take a time-step of 4 s in the coarse region. This behavior is not consistent with what we expect to 
achieve, if we assume the time-steps are bound by the fast terms (Fig. 7b). Further, we would expect that the ratio 𝑀 between the 
fine and coarse time-step was much larger. For DelBay2km the resolution ratio is 15, and 𝑀 = 3. On DelBay125m with a resolution 
ratio of 120 and the same underlying model equations, we would expect to have that 𝑀 is at least 3, if not significantly larger (in 
Lilly et al. [15], the authors found that 𝑀 = 24 for unsplit LTS3 in this case).

Motivated by the desire to understand this unexpected CFL behavior, we ran additional tests that revealed that the problem was 
due to a global CFL restriction imposed by the slow terms. Running the model on DelBay125m, with both SplitLTS3 and SplitFB-LTS, 
we observed that any increase to the coarse time-step would cause the model to become unstable, with the instability manifesting in 
the fine region far from the interface regions, deep in Delaware Bay. The fact that increasing the coarse time-step causes instability 
in the fine region means that it is very unlikely that the instability is being caused by the fast terms, which are being advanced with 
LTS.

The slow terms are only calculated once per coarse time-step at time 𝑡 = 𝑡𝑛, then that value is used to advance on the entire mesh. 
As a result, we encounter stability issues in the fine region coming from the slow terms. It is possible that this is due to the omission 
of the Coriolis term from the fast terms in the splitting as mentioned in Section 3.2; this will be a topic of future work.

A possible way to combat this limit on CFL performance imposed by the splitting would be to alter the algorithm so that, during 
the Fine Advancement step, the slow tendencies were evaluated once per fine-step. Instead of using the values of the slow tendencies 
as evaluated at time 𝑡𝑛 for the entire routine, we could calculate the slow tendencies at times 𝑡𝑛,𝑘 for 𝑘 = 0, ⋯ 𝑀 − 1 and use these 
values while advancing on fine cells. Doing this, the algorithm would effectively be treating the slow subsystem equally in both the 
fine and coarse regions. Exploration of this particular change to the operator splitting algorithm is outside the scope of this work, 
as its implementation in MPAS-Ocean would be particularly difficult due to the limitations of the framework described in Section 3. 
Alternatively, it is possible that adding the Coriolis term to the set of fast terms would be beneficial. To summarize, the speedup 
achieved by SplitFB-LTS versus RK4 on DelBay125m is significant, but the majority is necessarily coming from the splitting rather 
than from the local time-stepping because of the issue discussed above. If SplitFB-LTS were taking time-steps at least 24 times larger 
than RK4 in the coarse region, we would expect to see some additional speedup on DelBay125m due to LTS. Regardless, because the 
number of coarse cells in DelBay125m is small relative to the number of fine cells, it is likely that the speedup due to LTS would not 
be as significant as the speedup due to the splitting.

Finally, testing the strong parallel scaling of RK4, SplitLTS3, and SplitFB-LTS, we see the expected approximately linear strong 
scaling as the number of MPI ranks is increased (Fig. 10). For each of the three methods, one can notice a slight degradation in the 
scaling as we reach 32 ranks; this occurs because the number of cells per process (which in this case is approximately 1,800) is small 
enough that the communication between MPI ranks begins to dominate the simulation. This is expected behavior, and simply a signal 
that running the simulation on this mesh with more ranks would have diminishing returns.

4.3. Solution quality

Along with the greatly increased performance discussed in Section 4.2, SplitFB-LTS is able to produce SSH solutions of the same 
18

quality of both RK4 and SplitLTS3. We run the hurricane model using all three time-stepping schemes on DelBay2km for the full 
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Fig. 10. Strong parallel scaling in the hurricane Sandy test case on DelBay2km, run for 12 simulated hours.

Fig. 11. SSH solutions from RK4, SplitLTS3, and SplitFB-LTS compared to observed tide gauge data on DelBay2km, using time steps of 30 s, 60 s, and 120 s respectively, 
with 𝑀 = 3 for both LTS schemes. Note that The solution curves are directly on top of each other. The absolute difference between SplitLTS3 and SplitFB-LTS is shown 
19

on a log scale in the lower plots.
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duration of the simulation and record the model SSH at the locations of tidal gauges in and around Delaware Bay. We also compare 
model solutions to observed data. The observed data are from NOAA’s Center for Operational Oceanographic Products and Services 
(CO-OPS) gauges and are available at https://tidesandcurrents .noaa .gov/. We observe that the model solutions for each time-stepping 
scheme do not differ meaningfully. In particular, the difference between the SSH solutions produced by SplitLTS3 and SplitFB-LTS is, 
at most, on the order of centimeters (Fig. 11).

5. Conclusion

We have presented a new local time-stepping scheme (FB-LTS) for the shallow water equations based on the CFL optimized 
forward-backward Runge-Kutta schemes from Lilly et al. [16]. We have shown that the scheme gives exact conservation of mass and 
absolute vorticity when applied to a TRiSK discretization and performed numerical experiments that show that FB-LTS is a second 
order scheme everywhere, including on interface cells that allow communication between the fine and coarse regions. Implementing 
this method in MPAS-Ocean along with the operator splitting described in section 3.2, the SplitFB-LTS scheme produces solutions 
qualitatively equivalent to those produced by a SSPRK3 based local time-stepping scheme (SplitLTS3) and by the classical four-

stage, fourth-order Runge-Kutta method (RK4). Further, these solutions are produced at a significantly reduced computational cost; 
SplitFB-LTS is up to 10.08 times faster (in terms of CPU-time) than RK4, and up to 2.27 times faster than SplitLTS3.

Moving forward, we are interested in adapting SplitFB-LTS (and/or FB-LTS) for use in a multi-layer ocean model that uses a 
barotropic-baroclinic splitting. In particular, SplitFB-LTS would be a strong choice for a barotropic solver, as the barotropic subsystem 
is similar to the SWEs, so we would expect to see performance benefits very similar to those reported in this work. As we continuously 
chase greater computational performance in large scale models, particularly those of Earth’s climate, it is important to carefully 
consider the efficiency and efficacy of our methods. Our work here shows that SplitFB-LTS could significantly accelerate a layered 
model’s barotropic solver at little cost to accuracy.
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Appendix A. Derivation of interface prediction coefficients

FB-RK(3,2) is a second order scheme, so we will derive second order predictor coefficients for use in the Interface Prediction step 
of FB-LTS. Assume that we already have data for 𝐡𝑛 and 𝐮𝑛, and uncorrected data 𝐡̃𝑛+1∕3, 𝐮̃𝑛+1∕3, 𝐡̃𝑛+1∕2, 𝐮̃𝑛+1∕2, 𝐡̃𝑛+1, and 𝐮̃𝑛+1 on 
interface one.

Start with the spatially discretized system in (5), and assume that both Φ𝑒 and Ψ𝑖 are Lipschitz for all 𝑒 ∈ IF-1
𝐸

and 𝑖 ∈ IF-1
𝑃

. First, 
we need predictions for 𝐡𝑛,𝑘 for 𝑘 = 0, ⋯ 𝑀 and 𝐮𝑛,𝑘 for 𝑘 = 0, ⋯ 𝑀 − 1. Start with 𝐡𝑛,𝑘; take a Taylor series expansion centered at 
time 𝑡 = 𝑡𝑛, writing terms out to get a second order approximation for 𝑖 ∈ IF-1

𝑃
,

ℎ𝑖

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀

)
= ℎ𝑖(𝑡𝑛) +

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀
− 𝑡𝑛

)
𝜕ℎ𝑖

𝜕𝑡
(𝑡𝑛) +(

(Δ𝑡)2
)

= ℎ𝑖(𝑡𝑛) + 𝑘
Δ𝑡
𝑀

𝜕ℎ𝑖

𝜕𝑡
(𝑡𝑛) +(

(Δ𝑡)2
)
.

Next, we approximate ℎ𝑖(𝑡𝑛) by ℎ𝑛
𝑖
, which is a second order approximation (the order of FB-RK(3,2)). Then 𝜕ℎ𝑖

𝜕𝑡
(𝑡𝑛) can be approximated 

by Forward Euler (FE), 𝜕ℎ𝑖
𝜕𝑡

(𝑡𝑛) = ℎ̃𝑛+1
𝑖

−ℎ𝑛

Δ𝑡 + 
(
(Δ𝑡)1

)
. Insert these into the above,

ℎ𝑖

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀

)
=
(
ℎ𝑛
𝑖
+(

(Δ𝑡)2
))

+ 𝑘Δ𝑡
𝑀

(
ℎ̃𝑛+1
𝑖

− ℎ𝑛

Δ𝑡
+(

(Δ𝑡)1
))

+(
(Δ𝑡)2

)
= ℎ𝑛

𝑖
+ 𝑘Δ𝑡

𝑀

ℎ̃𝑛+1
𝑖

− ℎ𝑛
𝑖

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
+(

(Δ𝑡)2
)
.

Therefore, a second order approximation to 𝐡 data at times 𝑡𝑛,𝑘 for 𝑖 ∈ IF-1
𝑃

is given by

ℎ
𝑛,𝑘

𝑖
= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
. (A.1)

Similarly for 𝐮𝑛,𝑘, take a Taylor series expansion centered at 𝑡𝑛 for 𝑒 ∈ IF-1
𝐸

,

𝑢𝑒

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀

)
= 𝑢𝑒(𝑡𝑛) +

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀
− 𝑡𝑛

)
𝜕𝑢𝑒

𝜕𝑡
(𝑡𝑛) +(

(Δ𝑡)2
)

= 𝑢𝑒(𝑡𝑛) + 𝑘
Δ𝑡
𝑀

𝜕𝑢𝑒

𝜕𝑡
(𝑡𝑛) +(

(Δ𝑡)2
)
.

Approximate 𝑢𝑒(𝑡𝑛) by 𝑢𝑛
𝑒
, which is a second order approximation (the order of FB-RK(3,2)). We approximate 𝜕𝑢𝑒

𝜕𝑡
(𝑡𝑛) similarly to the 

above, 𝑢𝑡(𝑡𝑛) =
𝑢̃𝑛+1−𝑢𝑛

Δ𝑡 + 
(
(Δ𝑡)1

)
. Insert these approximations into the above to get

𝑢𝑒

(
𝑡𝑛 + 𝑘Δ𝑡

𝑀

)
=
(
𝑢𝑛
𝑒
+(

(Δ𝑡)2
))

+ 𝑘Δ𝑡
𝑀

(
𝑢̃𝑛+1
𝑒

− 𝑢𝑛
𝑒

Δ𝑡
+(

(Δ𝑡)1
))

+(
(Δ𝑡)2

)
= 𝑢𝑛

𝑒
+ 𝑘Δ𝑡

𝑀

𝑢̃𝑛+1
𝑒

− 𝑢𝑛
𝑒

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+
(
1 − 𝑘

𝑀

)
𝑢𝑛
𝑒
+(

(Δ𝑡)2
)
.

A second order approximation to 𝐮 data times 𝑡𝑛,𝑘 for 𝑒 ∈ IF-1
𝐸

is given by

𝑢𝑛,𝑘
𝑒

= 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+
(
1 − 𝑘

𝑀

)
𝑢𝑛
𝑒
. (A.2)

Next, we require predictions for 𝐡̄𝑛,𝑘+1∕3 and 𝐮̄𝑛,𝑘+1∕3 for 𝑘 = 0, ⋯ , 𝑀 − 1. Starting with 𝐡̄𝑛,𝑘+1∕3, we insert the above prediction 
𝐡𝑛,𝑘, given by (A.1), into the first stage of FB-RK(3,2) with the fine time-step Δ𝑡

𝑀
for 𝑖 ∈ IF-1

𝑃
,

ℎ̄
𝑛,𝑘+1∕3
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
3𝑀

Ψ𝑖
(
𝐮𝑛,𝑘,𝐡𝑛,𝑘

)
.

We need a way to approximate Ψ𝑖
(
𝑢𝑛,𝑘, ℎ𝑛,𝑘

)
. Assuming sufficient smoothness of Ψ𝑖 , we can use that Ψ𝑖

(
𝑢𝑛,𝑘, ℎ𝑛,𝑘

)
= Ψ𝑖 (𝑢𝑛, ℎ𝑛) +

 
(
(Δ𝑡)1

)
. Insert this into the above and we get

𝑛,𝑘+1∕3 𝑛,𝑘 Δ𝑡
( (

𝑛 𝑛
) (

1
))
21

ℎ̄
𝑖

= ℎ
𝑖

+
3𝑀

Ψ𝑖 𝑢 , ℎ + (Δ𝑡)
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=

(
𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
+(

(Δ𝑡)2
))

+ Δ𝑡
3𝑀

Ψ𝑖
(
𝐮𝑛,𝐡𝑛

)
+(

(Δ𝑡)2
)

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
+ Δ𝑡

3𝑀
Ψ𝑖

(
𝑢𝑛, ℎ𝑛

)
+(

(Δ𝑡)2
)
.

Then, we know that Ψ𝑖
(
𝐮𝑛,𝐡𝑛

)
= 3(ℎ̃𝑛+1∕3

𝑖
−ℎ𝑛

𝑖
)

Δ𝑡 . Substitute this to get

ℎ̄
𝑛,𝑘+1∕3
𝑖

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
+ Δ𝑡

3𝑀
3(ℎ̃𝑛+1∕3 − ℎ𝑛)

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+ 1
𝑀
ℎ̃
𝑛+1∕3
𝑖

+
(
1 − 𝑘+ 1

𝑀

)
ℎ𝑛
𝑖
+(

(Δ𝑡)2
)
.

A second order approximation to first-stage 𝐡 data at intermediate time levels for 𝑖 ∈ IF-1
𝑃

is given by

ℎ̄
𝑛,𝑘+1∕3
𝑖

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+ 1
𝑀
ℎ̃
𝑛+1∕3
𝑖

+
(
1 − 𝑘+ 1

𝑀

)
ℎ𝑛
𝑖
. (A.3)

Proceed similarly for 𝐮̄𝑛,𝑘+1∕3, insert 𝐮𝑛,𝑘 into the first stage of FB-RK(3,2) with the fine time-step for 𝑒 ∈ IF-1
𝐸

,

𝑢̄
𝑛,𝑘+1∕3
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

3𝑀
Φ𝑒

(
𝐮𝑛,𝑘,𝐡∗,𝑘

)
.

We need to approximate Φ𝑒
(
𝐮𝑛,𝑘,𝐡∗,𝑘

)
. We would like to do this by Φ𝑒

(
𝐮𝑛,𝐡∗

)
= 3(𝑢̃𝑛+1∕3𝑒 −𝑢𝑛𝑒 )

Δ𝑡 . One can show that |||Φ𝑒 (𝐮𝑛,𝑘,𝐡∗,𝑘) −
Φ𝑒

(
𝐮𝑛,𝐡∗

)||| ≤ 
(
(Δ𝑡)1

)
, and so Φ𝑒

(
𝐮𝑛,𝑘,𝐡∗,𝑘

)
=Φ𝑒

(
𝐮𝑛,𝐡∗

)
+ 

(
(Δ𝑡)1

)
. This follows from the assumption that Φ𝑒 is Lipschitz, and 

we omit the details for reasons of space. Insert this approximation into the above and we get

𝑢̄
𝑛,𝑘+1∕3
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

3𝑀

(
Φ𝑒

(
𝐮𝑛,𝐡∗

)
+(

(Δ𝑡)1
))

=

(
𝑘

𝑀
𝑢̃𝑛+1 +

(
1 − 𝑘

𝑀

)
𝑢𝑛 +(

(Δ𝑡)2
))

+ Δ𝑡
3𝑀

3(𝑢̃𝑛+1∕3
𝑒 − 𝑢𝑛

𝑒
)

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+ 1
𝑀
𝑢̃
𝑛+1∕3
𝑒 +

(
1 − 𝑘+ 1

𝑀

)
𝑢𝑛
𝑒
+(

(Δ𝑡)2
)
.

A second order approximation to first-stage 𝐮 data at intermediate time levels for 𝑒 ∈ IF-1 is given by

𝑢̄
𝑛,𝑘+1∕3
𝑒 = 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+ 1
𝑀
𝑢̃
𝑛+1∕3
𝑒 +

(
1 − 𝑘+ 1

𝑀

)
𝑢𝑛
𝑒
. (A.4)

Finally, we predictions for second-stage data ̄𝐡𝑛,𝑘+1∕2 and 𝐮̄𝑛,𝑘+1∕2 for 𝑘 = 0, ⋯ , 𝑀 − 1. Starting with ̄𝐡𝑛,𝑘+1∕3, we insert the above 
prediction 𝐡𝑛,𝑘 into the second stage of FB-RK(3,2) with the fine time-step Δ𝑡

𝑀
for 𝑖 ∈ IF-1

𝑃
,

ℎ̄
𝑛,𝑘+1∕2
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
2𝑀

Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕3, 𝐡̄𝑛,𝑘+1∕3

)
.

We need a way to approximate Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕3, 𝐡̄𝑛,𝑘+1∕3

)
. Again using the assumption that we have Lipschitz continuity, we can use that 

Ψ𝑖
(
𝐮̄𝑛,𝑘+1∕3, 𝐡̄𝑛,𝑘+1∕3

)
=Ψ𝑖

(
𝐮̃𝑛+1∕3, 𝐡̃𝑛+1∕3

)
+ 

(
(Δ𝑡)1

)
. Insert this into the above and we get

ℎ̄
𝑛,𝑘+1∕2
𝑖

= ℎ𝑛,𝑘
𝑖

+ Δ𝑡
2𝑀

(
Ψ𝑖

(
𝐮̃𝑛+1∕3, 𝐡̃𝑛+1∕3

)
+(

(Δ𝑡)1
))

=

(
𝑘

𝑀
ℎ̃𝑛+1
𝑖

+
(
1 − 𝑘

𝑀

)
ℎ𝑛
𝑖
+(

(Δ𝑡)2
))

+ Δ𝑡
2𝑀

2(ℎ̃𝑛+1∕2
𝑖

− ℎ𝑛
𝑖
)

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+ 1
𝑀
ℎ̃
𝑛+1∕2
𝑖

+
(
1 − 𝑘+ 1

𝑀

)
ℎ𝑛
𝑖
+(

(Δ𝑡)2
)
.

A second-order approximation to stage-two 𝐡 data for 𝑖 ∈ IF-1
𝑃

is given by

ℎ̄
𝑛,𝑘+1∕2
𝑖

= 𝑘

𝑀
ℎ̃𝑛+1
𝑖

+ 1
𝑀
ℎ̃
𝑛+1∕2
𝑖

+
(
1 − 𝑘+ 1

𝑀

)
ℎ𝑛
𝑖
. (A.5)
22

For 𝑢̄𝑛,𝑘1∕2𝑒 for 𝑒 ∈ IF-1
𝐸

, proceed similarly:



Journal of Computational Physics 520 (2025) 113511J.R. Lilly, G. Capodaglio, D. Engwirda et al.

𝑢̄
𝑛,𝑘+1∕2
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

2𝑀
Φ𝑒

(
𝐮̄𝑛,𝑘+1∕3,𝐡∗∗,𝑘

)
.

As we did to obtain the prediction for ℎ̄𝑛,𝑘+1∕2
𝑖

, we can approximate Φ𝑒
(
𝐮̄𝑛,𝑘+1∕3,𝐡∗∗,𝑘

)
= Φ𝑒

(
𝐮̃𝑛+1∕3,𝐡∗∗

)
+  

(
(Δ𝑡)1

)
. Insert this 

into the above to get

𝑢̄
𝑛,𝑘+1∕2
𝑒 = 𝑢𝑛,𝑘

𝑒
+ Δ𝑡

2𝑀

(
Φ𝑒

(
𝐮̃𝑛+1∕3,𝐡∗∗

)
+(

(Δ𝑡)1
))

=

(
𝑘

𝑀
𝑢̃𝑛+1 +

(
1 − 𝑘

𝑀

)
𝑢𝑛 +(

(Δ𝑡)2
))

+ Δ𝑡
2𝑀

2(𝑢̃𝑛+1∕2
𝑒 − 𝑢𝑛

𝑒
)

Δ𝑡
+(

(Δ𝑡)2
)

= 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+ 1
𝑀
𝑢̃
𝑛+1∕2
𝑒 +

(
1 − 𝑘+ 1

𝑀

)
𝑢𝑛
𝑒
+(

(Δ𝑡)2
)
.

A second-order approximation to stage-two 𝐮 data for 𝑒 ∈ IF-1
𝐸

is given by

𝑢̄
𝑛,𝑘+1∕2
𝑒 = 𝑘

𝑀
𝑢̃𝑛+1
𝑒

+ 1
𝑀
𝑢̃
𝑛+1∕2
𝑒 +

(
1 − 𝑘+ 1

𝑀

)
𝑢𝑛
𝑒
. (A.6)

Taking all this together, the interface one prediction step is given by (18).

Appendix B. Operator splitting influence on speedup with LTS

One may observe that the speedup 𝐶 (Fig. 9) of SplitFB-LTS versus SplitFB-RK(3,2) cannot be exclusively from the addition of 
local time-stepping. In fact, there is an additional source of speedup in play, originating from the operator splitting and the fact that 
the slow terms are calculated globally once per coarse time-step, resulting in extra savings when taking a longer coarse time-step with 
LTS.

To see this, we will use DelBay2km along with SplitFB-LTS and SplitFB-RK(3,2) as an example. For simplicity, say that the count 
ratio is 2, so that 1∕3 of the mesh uses the fine time-step and 2∕3 uses the coarse time-step. Say that SplitFB-LTS uses a coarse time-step 
Δ𝑡 and that 𝑀 = 3. Then, SplitFB-RK(3,2) uses a global time-step of Δ𝑡3 . In order for both methods to advance from time 𝑡 = 0 to time 
𝑡 =Δ𝑡,

• SplitFB-LTS calculates

– the slow tendencies once, globally,

– the fast terms 3 ⋅ 3 = 9 times in the fine region (3 RK stages with 𝑀 = 3),

– the fast terms 3 times in the coarse region.

• SplitFB-RK(3,2) calculates

– the slow tendencies 3 times, globally,

– the fast tendencies 3 ⋅ 3 = 9 times, globally.

Let 𝑆 and 𝐹 represent the computational cost of calculating the fast and the slow tendencies respectively. Then, we can calculate the 
theoretical speedup as

SplitFB-RK(3,2) cost

SplitFB-LTS cost
= 3𝑆 + 9𝐹

1
3 (𝑆 + 9𝐹 ) + 2

3 (𝑆 + 3𝐹 )

= 3𝑆 + 9𝐹
𝑆 + 5𝐹

. (B.1)

If we were to say that there was no splitting, that all terms were treated as fast, then 𝑆 = 0 and we get the theoretical speedup from 
LTS as 9∕5 = 1.8. This does not align with the speedup of 2.6 we get from Table 2. From (B.1) we see that as the cost 𝑆 increases 
relative to the cost 𝐹 , the speedup obtained by SplitFB-LTS increases, explaining the extra speedup.

In fact, we can use (B.1) to estimate the cost of the slow terms relative to that of the fast terms. Setting 𝑆 = 𝑐𝐹 , we can solve

3(𝑐𝐹 ) + 9𝐹
𝑐𝐹 + 5𝐹

= 2.6 (B.2)

to get that 𝑐 = 10. That is, the slow terms are approximately ten times as computationally expensive as the fast terms.

Data availability

All code is open source on GitHub. Code to setup and run test cases is also open source and available on GitHub. Links to relevant
23

repositories are given in the ‘Data Statement’ section.
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