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ABSTRACT: We present the formulation and optimization of a Runge–Kutta-type time-stepping scheme for solving the
shallow-water equations, aimed at substantially increasing the effective allowable time step over that of comparable meth-
ods. This scheme, called FB-RK(3,2), uses weighted forward–backward averaging of thickness data to advance the momen-
tum equation. The weights for this averaging are chosen with an optimization process that employs a von Neumann–type
analysis, ensuring that the weights maximize the admittable Courant number. Through a simplified local truncation error
analysis and numerical experiments, we show that the method is at least second-order in time for any choice of weights and
exhibits low dispersion and dissipation errors for well-resolved waves. Further, we show that an optimized FB-RK(3,2) can
take time steps up to 2.8 times as large as a popular three-stage, third-order strong stability-preserving Runge–Kutta
method in a quasi-linear test case. In fully nonlinear shallow-water test cases relevant to oceanic and atmospheric flows,
FB-RK(3,2) outperforms SSPRK3 in admittable time step by factors roughly between 1.6 and 2.2, making the scheme ap-
proximately twice as computationally efficient with little to no effect on solution quality.

SIGNIFICANCE STATEMENT: The purpose of this work is to develop and optimize time-stepping schemes for
models relevant to oceanic and atmospheric flows. Specifically, for the shallow-water equations we optimize for
schemes that can take time steps as large as possible while retaining solution quality. We find that our optimized
schemes can take time steps between 1.6 and 2.2 times larger than schemes that cost the same number of floating point
operations, translating directly to a corresponding speedup. Our ultimate goal is to use these schemes in climate-scale
simulations.
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1. Introduction

Large-scale climate models, such as the U.S. Department of
Energy’s Energy Exascale Earth System Model (E3SM)
(Golaz et al. 2022), grow in complexity every year as new nu-
merical techniques are developed and as high-performance
computing (HPC) systems become more powerful. Complex,
climate-scale simulations can take days or weeks or more of
real time to complete; it is vital that these run times are con-
trolled without making undue sacrifices to overall model qual-
ity. In the present work, we develop a way to formulate and
optimize a class of time-stepping schemes for the shallow-
water equations (SWEs). Our ultimate goal is to improve the
efficiency of simulations at the climate scale, but here we fo-
cus on the shallow-water equations as a starting point. Al-
though this work is directed to models of ocean and
atmosphere circulation, the ideas and methods developed
here may generalize to other coupled systems.

The central issue here is the following. The Courant–
Friedrichs–Lewy (CFL) condition is a well-known necessary
condition for the stability of a given model under an explicit
time-stepping scheme. In essence, the CFL condition places a
restriction on the size of the model’s time step, where this re-
striction depends on the model problem itself and the chosen
time and space discretizations. Formally, it is necessary for
stability that

n 5 c
Dt
Dx

# nmax, (1)

where c is a speed such as a gravity wave speed. We refer to n

as the Courant number and nmax as the maximal Courant
number for the given situation. In this work, we develop time-
stepping schemes optimized to have maximal nmax. We do this
by starting with a three-stage second-order Runge–Kutta
method from Wicker and Skamarock (2002), presently used in
the Model for Prediction Across Scales-Atmosphere (MPAS-A)
(Skamarock et al. 2012). This scheme is augmented by adding
forward–backward averaging of the thickness tendencies used to
update the fluid velocity. Resulting schemes have large nmax and
good dispersion and dissipation relations, and they compare well
against other schemes in both solution accuracy and effective
maximal Courant number.
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The SWEs serve as a standard test problem for algorithms
and methods designed for applications to ocean and atmo-
sphere modeling; in both cases, the model equations used for
climate-scale simulations are generalizations of the SWEs, in
which additional vertical tendencies and forcing terms are in-
cluded, and variable density is allowed. In recent years, strong
stability preserving Runge–Kutta (SSPRK) methods (Gottlieb
and Shu 1998) for solving the SWEs have become quite popular;
they have the property that at each time level, a spatial norm of
the solution is less than or equal to the norm of the solution at
the preceding level. These methods are used to solve the SWEs
in a variety of numerical paradigms and applications, such as
with finite element spatial discretizations (Azerad et al. 2017;
Dawson et al. 2013; Fu 2022), finite volume discretizations (Bao
et al. 2014; Capodaglio and Petersen 2022; Hoang et al. 2019;
Katta et al. 2015; Lilly et al. 2023; Roullet and Gaillard 2022;
Ullrich et al. 2010), and layered models that use a time splitting
of barotropic and baroclinic motions (Kärnä et al. 2018; Lan
et al. 2022). Despite this widespread use, strong stability preserv-
ing (SSP) time-integration methods may not be the best choice
for most large-scale geophysical SWE applications. The SSP
property is useful in systems where strong shocks and disconti-
nuities can develop and propagate, but such dynamics are
rare in climate-scale oceanic and atmospheric flows, in which
barotropic evolution is typically characterized by Rossby- and
Kelvin-type wave modes. Numerous contemporary large-scale
ocean and atmosphere models employ time-stepping methods
that do not have the SSP property, motivating an investigation
of its optimality for this class of flow. For example, to solve the
barotropic equations in split barotropic/baroclinic systems, the
Model for Prediction Across Scales-Ocean (MPAS-O) (Ringler
et al. 2013; Petersen et al. 2019) andModel for Prediction Across
Scales-Atmosphere (MPAS-A) (Skamarock et al. 2012) use a
two-stage predictor-corrector method and a three-stage second-
order Runge–Kutta method, respectively. The Community At-
mosphere Model (CAM) (Collins et al. 2004), the Parallel
Ocean Program (POP) (Kerbyson and Jones 2005), the Nucleus
for European Modeling of the Ocean (NEMO) (Madec et al.
2017), and the Hybrid Coordinate Ocean Model (HYCOM)
(Chassignet et al. 2007) all use variations of semi-implicit leap-
frog time integration schemes for their barotropic systems. The
Regional Ocean Modeling System (ROMS) (Shchepetkin and
McWilliams 2005) uses a multistep forward–backward Adams–
Bashforth/Adams–Moulton method.

With the potential performance benefits of the ability to
take larger time steps in mind, we turn our attention toward
methods that are optimal in this sense. Taking advantage of
the structure of the SWEs, we employ a strategy similar to
that used by Mesinger (1977), wherein the thickness equation
is advanced in time with a simple forward Euler step, then the
momentum equation is advanced with an explicit backward
Euler step using the recently obtained data for the thickness.
The method, referred to by Mesinger as the forward–
backward method, was more computationally efficient than
popular leapfrog methods of the time. The idea of advancing
the variables of a system of ODE separately, using the most
recently computed data from previously advanced variables,
has been employed by the developers of ROMS. Specifically,

Shchepetkin and McWilliams (2005, 2009) present an exten-
sion of a two-stage second-order Runge–Kutta scheme that,
within each RK stage, first advances the thickness variable,
then uses a weighted average of the most recently computed
data with previously computed data to advance the momen-
tum equation in a shallow-water system. The coefficients of
this scheme are selected to optimize the allowable time-step
length for a one-dimensional gravity wave system based on a
von Neumann–type stability analysis. In this work, we de-
velop a new, forward–backward weighted three-stage Runge–
Kutta method with favorable CFL limits using a similar
approach. The optimal weights for our forward–backward
scheme are obtained by von Neumann–type analysis on the
two-dimensional system, including a linear Coriolis term and
linearization of the advection operators about a nonzero
mean state. Using a numerical optimization algorithm, we ob-
tain a scheme that is very efficient in terms of its maximal
Courant number, as well as its dissipation and dispersion
characteristics.

The paper is structured as follows. We begin by introducing
our new time-stepping scheme, referred to as FB-RK(3,2), for
a general system of ODEs. Then, we describe the process by
which we obtain optimal weights for the FB averaging within
each RK stage. This process includes the derivation of a von
Neumann formulation of the linearized SWEs with a nonzero
mean flow and the formulation of an optimization problem.
Next, we present the results of this optimization and give a
brief discussion of the dispersion and dissipation errors of the
optimal FB-RK(3,2) schemes. Finally, we perform a number
of numerical experiments that demonstrate the computational
efficiency and efficacy of the optimal FB-RK(3,2) schemes
as compared to the three-stage third-order SSPRK scheme
(SSPRK3) from Gottlieb and Shu (1998). These experiments
include an investigation of CFL performance across five
shallow-water test cases, convergence tests, and comparisons
of solution quality. We show that an optimized FB-RK(3,2)
scheme can take time steps up to 2.2 times as large as
SSPRK3 in nonlinear test cases while retaining solution qual-
ity, and because both schemes consist of three RK stages, this
translates directly to a corresponding increase in efficiency.

2. CFL optimization of FB-RK(3,2)

Here, we introduce a time-stepping scheme for solving the
shallow-water equations (SWEs) that uses weighted forward–
backward averaging in the layer thickness data to advance the
momentum equation. We then use a von Neumann analysis
and a numerical optimization scheme to tune the forward–
backward weights so that the scheme has a large Courant
number when applied to the linearized SWEs.

a. FB-RK(3,2)

The time-stepping scheme presented here is an extension
of the three-stage, second-order Runge–Kutta time-stepping
scheme RK(3,2) from Wicker and Skamarock (2002). RK(3,2)
was originally presented as a third-order method and referred
to as RK3, but it is shown by Purser (2007) that the method is
third-order only on linear problems, reducing to second-order
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on nonlinear problems. When applied to the SWEs, our exten-
sion of RK(3,2) allows us to use the most recently obtained
data for the layer thickness to update the momentum data
within each Runge–Kutta stage of the method. This is done
by taking a weighted average of layer thickness data at the
old time level tn and the most recent RK stage, then applying
this to the momentum equation. For the remainder of the
manuscript, we will call our extension of RK(3,2) that uses
forward–backward averaging FB-RK(3,2), as it is a three-
stage, second-order scheme.

Consider a general system of ODEs in independent varia-
bles u5 u(t) and h5 h(t) of the following form:

du
dt

5 F(u, h),
dh
dt

5 C(u, h) , (2)

where t is the time coordinate. Let un ’ u(tn) and hn ’ h(tn)
hn ’ h(tn) be the numerical approximations to u and h at
time t 5 tn. Let Dt be a time step such that tn11 5 tn 1 Dt.
Also, let tn11/m 5 tn 1 (Dt/m) for any positive integerm. Then,
FB-RK(3,2) is given by

h
n11/3

5 hn 1
Dt
3
C(un, hn),

un11/3 5 un 1
Dt
3
F(un, h*),

h* 5 b1h
n11/3

1 (1 2 b1)hn, (3a)

h
n11/2

5 hn 1
Dt
2
C(un11/3, h

n11/3),

un11/2 5 un 1
Dt
2
F(un11/3, h**),

h** 5 b2h
n11/2

1 (1 2 b2)hn, (3b)

hn11 5 hn 1 DtC(un11/2, h
n11/2),

un11 5 un 1 DtF(un11/2, h***),
h*** 5 b3h

n11 1 (1 2 2b3)h
n11/2

1 b3h
n ? (3c)

The weights b1, b2, and b3 are called the forward–backward
(FB) weights. The best choice for the FB weights bi is a pri-
mary concern of this work.

The choice to calculate data at time tn11/3 and tn11/2 in the
first and second stages comes from the original RK(3,2)
scheme; the treatment of the thickness variable h in (3) shows
the formulation of RK(3,2). FB-RK(3,2) can be approximately re-
duced to RK(3,2) by taking b1 5 0, b2 5 2/3, and b3 5 0. This
produces an approximation to RK(3,2) as, while the first and third
stages are exact, the FB averaged h** 5 (2/3)hn11/2

1 (1/3)hn
data in the second stage is an approximation to h

n11/3
. The FB

averages are chosen in this way so that in each stage, data are
symmetrically distributed in time as preliminary experiments
showed that this provided the best CFL performance. In the first
two RK stages, the FB averaging is done on data from the begin-
ning and the end of the current time interval, i.e., in the first stage,
we compute values for h and u at time tn11/3, so the FB averaging

is done with data at time tn and time tn11/3. In the third RK stage,
we use data from the beginning, middle, and end of the current
time interval.

In the context of this work, h would be the fluid layer thick-
ness and u the fluid velocity. We have chosen to use an FB av-
erage of thickness to advance the velocity variable. However,
one could reasonably define a scheme similar to that given
by (3) by taking FB averages of u to advance h instead. The
subsequent analysis would remain largely the same, but the
optimal choices for the FB weights could change substantially,
along with the performance of the scheme as a whole. What
happens in this case is an open question.

As stated above, the original RK(3,2) scheme is O[(Dt)2].
For any choice of the FB weights, FB-RK(3,2) remains
O[(Dt)2] while greatly increasing the maximum allowable time
step for most problems. A generalized local truncation error
analysis is outside the scope of this paper, so we show this
holds for a particular problem of interest in section a of the
appendix.

b. Linearized shallow-water equations

A primary concern of this work is the application of
FB-RK(3,2) to the nonlinear SWEs on a rotating sphere. Ap-
plication of a von Neumann–type analysis requires a linear set
of PDEs, and we consider the two-dimensional system with
linear Coriolis and linearized advection operators to ensure
the time-step optimization is conducted on a system that is a
close approximation to the fully nonlinear equations. The
linearized SWEs centered about a nonzero mean flow are
given by

­~u

­t
1 f ( ~U 1 ~u)⊥ 1 z̃ ~U

⊥
52~U ? =~u 2 g=h̃,

­h̃
­t

1 H(= ? ~u) 1 = ? (h̃ ~U) 5 0 , (4)

where ~u 5 [ũ(x, y, t), ỹ (x, y, t)] is a perturbation of the hori-
zontal fluid velocity, x and y are the spatial coordinates, t is
the time coordinate, f 5 2V sinu is the Coriolis parameter,
where V is the angular velocity of the rotating sphere and
u denotes latitude, ~U 5 (Ũ , Ṽ) is the constant horizontal
mean fluid velocity, ~u⊥ 5 (2ỹ , ũ), z̃ 5 (­ỹ /­x)2 (­ũ/­y) is the
vertical component of vorticity =3 ~u, g is the gravitational
constant, h̃ 5 h̃(x, y, t) is a perturbation of the layer thickness,
and H is the (constant in space) fluid layer thickness when at
rest. Note that while ~u and h̃ depend on x and y throughout
this work, we will often suppress this dependence in the nota-
tion. The full derivation of these equations is given in section b
of the appendix.

We can write these in terms of dimensionless quantities by
writing c5

�����
gH

√
, u5 (u, y )5 (~u/c), U5 ( ~U/c), and h 5 h̃/H.

Then, the dimensionless, linearized SWEs centered about a
nonzero mean flow are given by

­u

­t
1 f (U 1 u)⊥ 1 czU⊥ 52cU ? =u 2 c=h,

­h

­t
1 c(= ? u) 1 c[= ? (hU)] 5 0: (5)
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c. von Neumann analysis

In the analysis that follows, we assume that the system (5)
is discretized on a rectangular, staggered Arakawa C-grid,
where h is computed at cell centers, u is computed at the left
and right edges of cells, and y is computed at the top and bot-
tom edges of cells (Arakawa and Lamb 1977). For brevity, we
skip some details of calculations relating to the spatial discre-
tization in the main text and instead provide them in section c
of the appendix.

With the goal of using a von Neumann–type analysis to ob-
tain an optimal choice of FB weights, we apply a Fourier
transform in x and y to the linearized SWEs (5). This is equiv-
alent to seeking solutions of the following form:

u(x, y, t) 5 û(k, ‘, t)eikx1i‘y,

y (x, y, t) 5 ŷ (k, ‘, t)eikx1i‘y,

h(x, y, t) 5 ĥ(k, ‘, t)eikx1i‘y,

where k is the wavenumber with respect to x, and ‘ is the
wavenumber with respect to y. In doing this, spatial deriva-
tives are now all of the form (­/­x)(eikx1i‘y) or (­/­y)(eikx1i‘y).
Assuming a rectangular C-grid, using centered differences
these spatial derivatives become

­

­x
(eikx1i‘y) 5

i2 sin k
Dx
2

( )
Dx

eikx1i‘y, (6)

­

­y
(eikx1i‘y) 5

i2 sin ‘
Dy
2

( )
Dy

eikx1i‘y : (7)

To compute the Coriolis terms, we need the values of u at y
points and the values of y at u points; call these uy and yu, re-
spectively. On a rectangular C-grid, we achieve this with un-
weighted four-point averages of the nearest data, which gives

uy (x, y, t) 5 cos k
Dx
2

( )
cos ‘

Dy
2

( )
û(k, ‘, t)eikx1i‘y, (8)

yu(x, y, t) 5 cos k
Dx
2

( )
cos ‘

Dy
2

( )
ŷ (k, ‘, t)eikx1i‘y: (9)

The details of these calculations are given in section c of
the appendix. Set K5 2 sin[k(Dx/2)], L5 2 sin[‘(Dy/2)], and
c 5 f cos[k(Dx/2)]cos[‘(Dy/2)]. Then, accounting for the Fou-
rier transform and the C-grid spatial discretization, (5) becomes

­û
­t

5 fV 1 cŷ 2 iU
cK
Dx

1 iV
cL
Dy

( )
û 2 i

cK
Dx

ĥ,

­ŷ

­t
52fU 2 cû 2 iU

cK
Dx

1 iV
cL
Dy

( )
ŷ 2 i

cL
Dy

ĥ,

­ĥ

­t
52 i

cK
Dx

û 1 i
cL
Dy

ŷ

( )
2 iU

cK
Dx

1 iV
cL
Dy

( )
ĥ ? (10)

Let nx 5 c(Dt/Dx) and ny 5 c(Dt/Dy) be the Courant numbers
with respect to x and y, respectively. Also, set u 5 Dtc. Then,
we apply FB-RK(3,2) to (10):

ĥ
n11/3

5 ĥn 2
1
3

iKnxû
n 1 iLnyŷ

n 1 (iUKnx 1 iVLny)ĥn
[ ]

,

û
n11/3

5 ûn 1
1
3

DtfV 1 uŷ n 2 (iUKnx 1 iVLny)ûn
[

2 iKnxĥ
*
]
,

ŷ
n11/3

5 ŷ n 1
1
3

2DtfU 2 uûn 2 (iUKnx 1 iVLny)ŷ n
[

2 iKnxĥ
*
]
,

ĥ* 5 b1ĥ
n11/3

1 (1 2 b1)ĥn, (11a)

ĥ
n11/2

5 ĥn 2
1
2

iKnxû
n11/3

1 iLnyŷ
n11/3

1 (iUKnx

[
1 iVLny)ĥn11/3

]
,

û
n11/2

5 ûn 1
1
2

DtfV 1 uŷ
n11/3

2 (iUKnx 1 iVLny)û
n11/3

[
2 iKnxĥ

**
]
,

ŷ
n11/2

5 ŷ n 1
1
2

2DtfU 2 uû
n11/3

2 (iUKnx1 iVLny)ŷ n11/3
[

2 iKnxĥ
**
]
,

ĥ** 5 b2ĥ
n11/2

1 (1 2 b2)ĥn, (11b)

ĥn11 5 ĥn 2 iKnxû
n11/2

1 iLnyŷ
n11/2

1 (iUKnx

[
1 iVLny)ĥn11/2

]
,

ûn11 5 ûn 1 DtfV 1 uŷ
n11/2

2 (iUKnx 1 iVLny)û
n11/2

[
2 iKnxĥ

***
]
,

ŷ n11 5 ŷ n 1 2DtfU 2 uû
n11/2

2 (iUKnx 1 iVLny)ŷ n11/2
[

2 iKnxĥ
***

]
,

ĥ*** 5 b3ĥ
n11 1 (1 2 2b3)ĥn11/2

1 b3ĥ
n: (11c)

Note that (11) forms a linear system in ûn, ŷ n, and ĥn, that is,
there is a matrix G and column vector b such that

ŵ
n11

5 Gŵ
n
1 b, (12)

where ŵn
5 (ûn

,ŷ n ,ĥn)T. It follows from (12) that

ŵ
n
5 Gnŵ

0
1 (I 2 Gn)(I 2 G)21b , (13)

where I is the identity matrix. Note that in the above, the su-
perscript on ŵ is an index on the time step, whereas
the superscript on G is an exponent. The matrix G is called the
amplification matrix; properties of von Neumann analysis tell
us that a time-stepping method is stable if the eigenvalues of
its amplification matrix reside within in the unit circle centered
at the origin in the complex plane (LeVeque 2007). This prop-
erty is fundamental to the analysis in section 2d.
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d. CFL optimization

With FB-RK(3,2) applied to the von Neumann formulation
of the linearized SWEs (11) and the corresponding amplifica-
tion matrix G from (12), we can more clearly state the goal of
the analysis presented in this section. We are interested in se-
lecting the FB weights b1, b2, and b3 in FB-RK(3,2) so that
the Courant numbers nx 5 c(Dt/Dx) and ny 5 c(Dt/Dy) can be
taken as large as possible while retaining stability of the
method.

The eigenvalues of the amplification matrix G depend on
the Courant numbers nx and ny and on b1, b2, and b3. To sim-
plify the analysis, we will assume that nx 5 ny 5 n is the Cou-
rant number (this is equivalent to assuming that the spatial
discretization is on a grid consisting of sqaure cells). Then, we
can write G 5 G(n , b1, b2, b3). For a given choice of b1, b2,
and b3, let nmax

(b1,b2,b3) be the largest value of the Courant num-

ber for which FB-RK(3,2) is stable, i.e., largest value of the
Courant number for which the eigenvalues of the amplifica-
tion matrix G reside within the unit circle. Symbolically,
nmax
(b1,b2,b3) is the largest number such that

|lmax[G(n , b1, b2, b3)]| # 1, for all n 2 0, nmax
(b1,b2,b3)

( ]
, (14)

where lmax(G) is the largest eigenvalue, in absolute value, of
the matrixG.

While the matrix G is too complex to analyze directly, we
can use numerical optimization tools to find optimal FB
weights. That is, we can formulate this problem explicitly as
an optimization problem with an appropriate cost function
and constraints, then use numerical optimization algorithms
to search the space of admittable FB weights. We can maxi-
mize nmax by minimizing an appropriate cost function:

C 5 C(b1, b2, b3), (15)

subject to the constraint that the eigenvalues of G satisfy (14).
The particular numerical optimization scheme we employ

here is the simplicial homology global optimization (SHGO)
algorithm developed by Endres et al. (2018), implemented in
the Python programming language via the open-source Py-
thon library SciPy (Virtanen et al. 2020). SHGO is suitable
for so-called black-box optimization problems wherein the
cost function can be nonsmooth and discontinuous. Further,
SHGO is guaranteed to converge to a global optimum as the
number of iterations increases. As such, SHGO is an appro-
priate choice for our purposes, where the eigenvalues of the
matrix G are sensitive to small changes in the FB weights.

The matrix G also depends on additional parameters Dtf,
kDx, and ‘Dy as can be seen in (11). For the purposes of the
numerical optimizations we perform here, we set Dtf 5 1022

since taking f 5 1024 represents the value of the Coriolis pa-
rameter at midlatitudes and we expect a FB-RK(3,2) to be ca-
pable of a time step on the order of 102 in the nonlinear SWE
test cases described in section 3. Preliminary tests showed that
the choice of value for Dtf had little to no effect on the optimi-
zations in practice. We take kDx5 ‘Dy5p, which corre-
sponds to the case of gridscale waves. This choice is informed

by the fact that instability often comes from gridscale pro-
cesses. That is, we perform the optimization on gridscale
waves, which represents a worst-case with the hope that this
provides the best overall stability.

1) THE CHOICE OF COST FUNCTIONS

Given a particular choice of b1, b2, and b3, we can easily es-
timate the value of nmax

(b1,b2,b3) to arbitrary precision. Our goal is
to maximize this parameter, so we seek to minimize the cost
function:

C1(b1, b2, b3) 5
1

nmax
(b1,b2,b3)

: (16)

In the special case where the mean flow U 5 (U, V) is zero,
we additionally consider a second choice of cost function.
When U 5 0 the column vector b in (12) is also zero, so (13)
simplifies to

ŵ
n
5 Gnŵ

0
: (17)

In this case, it is easy to show that the numerical amplification
matrix G approximates G̃ :5 eADt, where

A 5
0 f 2ick
2f 0 2ic‘
2ick 2ic‘ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (18)

The matrix G̃ is the analytical counterpart to the numerical
amplification matrix G that arises from solving a spatially
continuous version of (10). In short, if we assume that our
time-stepping method, which is determined by the matrix G,
produces the exact solution at time t 5 Dt, then G5 G̃. We
give the details of this in appendix, section d.

Since we wish for G to approximate G̃ for a given choice of
FB weights, we aim to minimize a second choice of cost function:

C2(b1, b2, b3) 5
1

nmax
(b1 ,b2,b3)

1

�p/6

0
‖G̃(n) 2 G(n , b1, b2, b3)‖dn , (19)

where k?k is the Frobenius norm:

‖A‖ 5
������������
∑i,j(aij)2

√
: (20)

This choice of cost function seeks to maximize nmax while also
producing a scheme that has favorable dissipation and disper-
sion behavior. The choice of norm in the integral term of C2

was chosen as it is quick to compute during the optimization
process. There is a certain freedom in the choice of limits of
integration for the integral term in C2; this term requires that
the difference between G and G̃ is minimal as for small values
of n , which correspond to well-resolved waves. In essence,
while C1 only considers the CFL performance of the resulting
method, C2 does this while also considering that G should ac-
curately approximate its analytical counterpart G̃.
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In summary, we consider two choices of cost function given
by C1 in (16) and C2 in (19). The function C1 is valid in any
case, while C2 applies only when the mean flow U is taken to
be zero.

2) OPTIMIZATION RESULTS

In the context of the dimensionless Eq. (5), the parameter
|U| is called the Froude number. We perform the optimization
described above five total times, considering different values
of the Froude number |U| that appear in oceanic and atmo-
spheric flows.

As noted above, the SHGO algorithm used here is guaran-
teed to converge to a globally optimal solution if run for
enough iterations. As our problem is relatively complex and
computing resources finite, it is more likely in practice that
the method will convergence to a local extremum. For exam-
ple, consider the first two rows of Table 1 and notice that the
value of nmax

(b1,b2,b3) given by optimizing C2 is greater than that
given by optimizing C1. If these were globally optimal solu-
tions, we would have that nmax

(0:500,0:500,0:344) $ nmax
(0:516,0:532,0:331)

since C1 consists only of a term that asks for a maximal
nmax
(b1,b2,b3), while C2 is the sum of the same term with a nonneg-

ative term that asks for G to approximate G̃. Despite the
problem being sufficiently complex that globally optimal solu-
tions are difficult to obtain, the results from section 3 show
that the choices of FB weights from Table 1 are extremely
efficient in practice.

A similar Runge–Kutta-based method using forward–backward
averaging in the momentum equation is developed by
Shchepetkin and McWilliams (2005) (from here on denoted
ShMc). In ShMc, the efficiency of their optimized FB method
is reported in terms of the parameter a :5 ckDt, by considering
the maximal value amax for which the method is stable. Trans-
lating this into the notation used here, we obtain

a 5 ckDt

5 nkDx: (21)

For their optimal RK2-based FB method, ShMc reports that
(nkDx)max ’ 2.141; since their scheme uses two RK stages,
this translates to what we refer to as an effective CFL number
of 2.141/2 ’ 1.071. Here, we have taken kDx 5 p and have
nmax 5 1.804 in the best case, so (nkDx)max 5 1.804p ’ 5.667.
FB-RK(3,2) uses three RK stages, so we obtain an effective
CFL number of 5.667/3 ’ 1.889, an increase of approximately
1.764 times over ShMc’s RK2 FB scheme. Note that ShMc’s
(nkDx)max comes from their FB scheme as applied to a one-
dimensional wave system analogous to (22), whereas ours is
obtained from the two-dimensional linearized SWEs. The
comparison between these two values is not one-to-one, but
do serve as a general comparison of the efficiency of both
methods.

To visualize FB-RK(3,2)’s treatment of gravity waves within
the SWEs, we can apply the scheme to a simple wave system
and analyze the resulting dissipation and dispersion errors
(Fig. 1). Applying a Fourier transform in space to the 1D line-
arized SWEs (A1) gives

­ĥ

­t
52ickû

­û
­t

52ickĥ ? (22)

Choose a time step Dt and let K̃ 5 kDx and n 5 c(Dt/Dx). The
FB-RK(3,2) scheme for this system is then given by

hn11/3 5 hn 2
iK̃n

3
un,

un11/3 5 un 2
iK̃n

3
[b1h

n11/3 1 (1 2 b1)hn], (23a)

hn11/2 5 hn 2
iK̃n

2
un11/3,

un11/2 5 un 2
iK̃n

2
[b2h

n11/2 1 (1 2 b2)hn], (23b)

hn11 5 zn 2 iK̃nun11/2,

un11 5 un 2 iK̃n[b3h
n11 1 (1 2 2b3)hn11/2 1 b3h

n]: (23c)

Equation (23) defines a system of linear equations, which in turn
defines a numerical amplification matrix G0 similar to that in
(12). One can show that the general solution to the system (22) is

h(t)
u(t)

[ ]
5 exp t

0 2ick
2ick 0

( )[ ]
h(0)
u(0)

[ ]
, (24)

and that eigenvalues of the matrix exponential above are
l 5 e6ickt. At time t5 Dt, these eigenvalues are l 5 e6iK̃n .

Note that although we have used the Courant number
n 5 c(Dt/Dx) in this discussion in an effort to use notation analo-
gous to the rest of this section, the system considered here is not
discretized in space; we have that K̃n 5 kDx3 c(Dt/Dx)5 ckDt.
Values of K̃n close to zero correspond to well-resolved waves,
while values approaching p correspond to temporal gridscale
waves. Dissipation error can be read as the distance a numerical
eigenvalue is from the unit circle, resulting in the corresponding
wave being damped out of the system. Dispersion error can be
read as the difference in the angles made with the positive real
axis between a numerically determined eigenvalue with its analyt-
ical counterpart, resulting in an error in the phase speed of the
corresponding wave. For all choices of FB weights in Table 1, dis-
sipation and dispersion errors for well resolved waves are very
low (Fig. 1). As waves become less well resolved, each of the five

TABLE 1. Results of optimizing FB-RK(3,2) for the given
cost functions, rounded to three decimal places. Note that the
reported values of nmax

(b1,b2,b3) are the maximal Courant numbers in
the context of a problem consisting only of gridscale waves, i.e.,
the problem for which FB-RK(3,2) was optimized.

|U| Cost function b1, b2, b3 nmax
(b1,b2,b3)

0 C1 0.500, 0.500, 0.344 1.767
0 C2 0.516, 0.532, 0.331 1.804
0.05 C1 0.531, 0.531, 0.313 1.319
0.15 C1 0.359, 0.578, 0.234 1.025
0.25 C1 0.656, 0.938, 0.188 0.853
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schemes exhibits different behavior. In particular, note the be-
havior of the eigenvalues in Fig. 1c; well resolved waves are han-
dled well as expected, and as waves move toward grid scale, the
dissipation errors become very high, i.e., the blue curve becomes
closer to the origin. This means that waves that are not well-
resolved are quickly damped out of the system, which may
explain the strong performance of FB-RK(3,2) with the corre-
sponding choices of FB weights. Contrast this with the behavior
of SSPRK3 in Fig. 1f; as we move toward the grid scale, rather
than damping out the potentially problematic motions, the eigen-
values simply leave the unit circle, signaling that the method has
become unstable.

Note that the paradigm in which the plots of Fig. 1 exist is dif-
ferent than the paradigm for which the FB weights were opti-
mized. That is, the matrix G0 comes from applying FB-RK(3,2)

to a one-dimensional gravity wave system (22), whereas the
FB weights presented in Table 1 are optimized for the linear-
ized SWEs (10). We present the plots in Fig. 1 to show that
the schemes optimized for stability in the linearized SWEs
treat well-resolved gravity waves correctly in the best case,
where the equations are not discretized in space. This also
allows for a quick visual comparison between other methods
presented with similar plots in the literature; in particular with
the methods presented in ShMc.

3. Numerical experiments

Here, we present a number of numerical experiments that
demonstrate the efficiency and accuracy of the CFL-optimized
FB-RK(3,2) schemes presented in section 2. These experiments

FIG. 1. An illustration of dissipation and dispersion errors for FB-RK(3,2) with each choice of FB weights from Table 1 and SSPRK3.
Eigenvalues l 5 e6iK̃n of the matrix in the exact solution (24) are given by orange dots. Drawing a ray from the origin to one of these
dots and measuring the angle that ray makes with the positive real axis gives the corresponding value of K̃n . In other words, K̃n is the ar-
gument of the corresponding complex number. Eigenvalues of the numerical amplification matrix G0 as K̃n 5 kDxn increases are given
by the blue curve and the blue stars. Dashed lines connect exact eigenvalues to numerically determined counterparts, which gives a mea-
sure of dissipation and dispersion errors. Values of K̃n close to zero correspond to well-resolved waves, while values approaching p corre-
spond to temporal gridscale waves.
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compare SSPRK3 and RK(3,2) to FB-RK(3,2) in terms of
time-stepping efficiency, temporal convergence, and solu-
tion accuracy. We consider a total of five different nonlin-
ear shallow-water test cases described below. The fully
nonlinear SWEs are given by (A14) in section b of the
appendix.

Quasi-linear gravity wave (QLW): A simple gravity wave
traveling from the north pole to the south, then returning
to the north, a process which takes approximately seven
days of simulated time. This is the case of an external
wave mode, also called the Lamb mode in the context of
atmospheric modeling. The momentum advection terms
in the momentum equation of (A14) are turned off, mak-
ing the momentum equation purely linear. The thickness
equation (A14) is formally nonlinear, but because the
fluid depth is sufficiently large compared to any perturba-
tion in the thickness, this behaves as though it is linear.
Therefore, we refer to this test case as quasi-linear. The
fluid velocity is initialized to zero, while the thickness is
initialized as a Gaussian bell curve centered at the north
pole of the form exp[2100(x2p)2 – 100y2]1 500.

Barotropically unstable jet (BUJ): Originally formulated by
Galewsky et al. (2004), this case consists of a strong zonal
flow at midlatitude with a small perturbation that causes
the barotropic jet to become unstable. This flow is driven
by strongly nonlinear momentum advection tendencies,
physical processes that are of particular relevance to
weather prediction and climate modeling.

Williamson test case 2 (WTC2): A steady state solution to
the nonlinear SWEs, one of the standard SWE test cases
developed by Williamson et al. (1992). The case consists
of a geostrophically balanced zonal flow that is constant
for all time.

Williamson test case 4 (WTC4): A forced nonlinear flow con-
sisting of a translating low pressure center superimposed
on a jet stream, one of the standard Williamson et al.
(1992) SWE test cases.

Williamson test case 5 (WTC5): A zonal flow over an iso-
lated mountain, one of the standard Williamson et al.
(1992) SWE test cases. Here, the initial flow is exactly
as in WTC2, but the seafloor topography is nonuni-
form, consisting of an isolated mountain at midlati-
tude. This perturbation alters the geostrophic balance
of the flow, triggering the development of advection-
driven instabilities.

All test cases take place on a rotating aquaplanet with
angular velocity V 5 7.292 3 1025 s21 and a radius of
6371.22 km. The seafloor topography is uniform unless oth-
erwise specified. Each test case is implemented using a
TRiSK spatial discretization (Ringler et al. 2010), which is a
finite volume-type spatial discretization made for unstruc-
tured, variable-resolution polygonal grids. Here, we slightly
alter the standard TRiSK discretization by using an upwind
potential vorticity flux to remove gridscale noise in the evo-
lution of vorticity. Icosahedral meshes were used through-
out, with quasi-uniform 60-km resolution employed in all
test cases. Meshes were optimized according to the spheri-
cal centroidal Voronoi tessellation (SCVT) metric using the
JIGSAW library (Engwirda 2017), ensuring the TRiSK dis-
cretization achieves approximately second-order accuracy
in the L2 norm. Balanced initial conditions for the BUJ and
WTC test cases are generated following the procedure de-
scribed in section e of the appendix. The code used to run
all the experiments described in this section is open source
and available on GitHub and Zenodo; see the data avail-
ability statement at the end of this document.

TABLE 2. CFL performance of FB-RK(3,2) with optimal FB weights from Table 1 compared to SSPRK3 and RK(3,2) on various
test cases. The recorded values for Dt represent the largest time step for which the given test case could run without becoming
unstable for the given duration. Time steps were determined experimentally by running the model for the given duration, increasing
the time step until the model became unstable. For practical reasons, time steps were found as multiples of 5.

|U| 5 0, C1 |U| 5 0, C2 |U| 5 0.05, C1 |U| 5 0.15, C1 |U| 5 0.25, C1

SSPRK3 RK(3,2)

0.500 0.516 0.531 0.359 0.656
0.500 0.532 0.531 0.578 0.938

Test case 0.344 0.331 0.313 0.234 0.188

QLW 7 days
Max Dt (s) 515 515 1445 1435 1115 960 820
Dt/DtSSPRK3 1.00 2.81 2.79 2.17 1.86 1.59

BUJ 6 days
Max Dt (s) 110 115 195 195 195 190 185
Dt/DtSSPRK3 1.05 1.77 1.77 1.77 1.73 1.68

WTC2 5 days
Max Dt (s) 220 230 355 360 370 410 360
Dt/DtSSPRK3 1.05 1.61 1.64 1.68 1.86 1.64

WTC4 5 days
Max Dt (s) 110 115 230 235 240 210 175
Dt/DtSSPRK3 1.05 2.09 2.14 2.18 1.91 1.59

WTC5 15 days
Max Dt (s) 145 145 270 275 310 275 235
Dt/DtSSPRK3 1.00 1.86 1.9 2.14 1.90 1.62
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a. CFL performance

On all of the test cases described above, the optimized
FB-RK(3,2) schemes from section 2d admit time steps be-
tween 1.59 and 2.81 times as large as SSPRK3 or RK(3,2).
This demonstrates the ability for the FB averaging employed
by FB-RK(3,2) and the subsequent optimization of the FB
weights to greatly increase the stability range of an existing
method across multiple problems. SSPRK3 is used as a base-
line comparison here since it admits the smallest time steps
for each case out of the schemes considered here, and it also
consists of three Runge–Kutta stages, costing the same num-
ber of floating-point operations as RK(3,2) and FB-RK(3,2).

The largest increases in the admittable time step are in the
QLW test case, with the largest increase at 2.81 times in the
best case (Table 2). For practical reasons, we used a nonlinear
SWE model to run the above test cases, but QLW was inten-
tionally designed so that the model equations, while still
formally nonlinear, approximate the behavior of the linear
SWEs. That is, QLW provides a test case as close as possible
to the paradigm for which FB-RK(3,2) was optimized. As
noted, the comparison is not one-to-one. FB-RK(3,2) was op-
timized for the linearized SWEs on a square C-grid, while
QLW uses quasi-linear SWEs and a hexagonal grid with a
TRiSK discretization. Nonetheless, the improvement in CFL
performance is remarkable and clearly demonstrates the effi-
cacy of the optimization performed in section 2d.

The remaining four test cases are fully nonlinear, covering
a range of standard shallow-water test cases relevant to atmo-
spheric and oceanic flows. In these, FB-RK(3,2) admits time
steps between 1.59 and 2.18 times larger than SSPRK3. As
SSPRK3 consists of the same number of Runge–Kutta stages
as FB-RK(3,2), this directly translates to an increase of over-
all efficiency of between 1.59 and 2.18. The increases in admit-
table time step in these nonlinear cases are slightly less than
those in the QLW case in part because these problems include
fully nonlinear motions that cannot be accounted for in the
optimization process used here; because our optimization re-
lies on properties of von Nuemann stability analysis, we are
limited to optimizing on a linear set of equations. However,
Table 1 suggests that optimizing for the linearized SWEs pro-
vides substantial benefits even for the nonlinear SWEs. In-
deed, as noted above, our analysis and the subsequent
optimization was performed under a number of simplifica-
tions versus the paradigm in which these numerical experi-
ments were performed. Nonetheless, our results show that the
optimized FB-RK(3,2) schemes are robust when applied to
fully nonlinear problems with a full TRiSK discretization.
This provides evidence that our schemes are at least partially
agnostic to the details of the spatial discretization.

Additionally, one can observe that the optimized FB-RK(3,2)
schemes are sensitive to the Froude number; as this increases, the
corresponding values of nmax

(b1,b2,b3) decrease (Table 1). As the
Froude number increases, the flow becomes dominated by advec-
tion rather than gravity wave propagation. When the stability is
dominated by fast waves, FB-RK(3,2) works best as evidenced by
its performance in the QLW case. As the wave and advective
phase speeds come closer together, the speed-up from FB is

reduced, due to the flow taking on more advective nature as can
be seen in the four fully nonlinear test cases.

Turning our attention to the four nonlinear test cases, we see
that FB-RK(3,2) with the FB weights obtained by optimizing C1

with |U| 5 0.05 admits the largest time step in each case except
WTC2 where it instead admits the second largest time step. This
points to (b1, b2, b3)5 (0.531, 0.531, 0.313) as a robust option for
a broad span of problems. However, it is almost certain that the
optimal choice of coefficient will be problem dependent.

b. Temporal convergence

In section a of the appendix, we perform a simplified local trun-
cation error analysis that shows that FB-RK(3,2) is second-order
in time for any choice of FB weights on the one dimensional

FIG. 2. Temporal convergence for FB-RK(3,2) for a selection of
FB weights. Convergence tests were performed using the QLW
case, run for 7 simulated days. The L2 errors are computed against
a reference solution generated by the classical four-stage, fourth-
order Runge–Kutta method (RK4) with a time step of 10 s.
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linearized SWEs. Here, we support the assertion that FB-RK(3,2)
is second-order in time with numerical experiments.

Each tested variation of FB-RK(3,2) is second-order in
time (Fig. 2). Differences in accuracy between the variations

of FB-RK(3,2) are negligible, showing that the choice of opti-
mized FB weights has little effect on accuracy in this case.
RK(3,2), the scheme on which FB-RK(3,2) is based, is third-
order as expected as this is a linear problem (Purser 2007).

FIG. 3. Relative vorticity produced by (a) SSPRK3 and (b) FB-RK(3,2) with (b1, b2, b3) 5
(0.531, 0.531, 0.313) on the BUJ test case after 6 days of simulated time. SSPRK3 uses a time
step of 108 s and FB-RK(3,2) uses a time step of 192 s. (c) The absolute difference between the
two solutions. The plots themselves are lat/lon projections of the sphere.
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FIG. 4. Relative vorticity produced by (a) SSPRK3 and (b) FB-RK(3,2) with (b1, b2, b3) 5
(0.531, 0.531, 0.313) on the WTC5 test case after 50 days of simulated time. SSPRK3 uses a time
step of 135 s and FB-RK(3,2) uses a time step of 288 s. (c) The absolute difference between the
two solutions. The plots themselves are lat/lon projections of the sphere.

L I L L Y E T A L . 3201DECEMBER 2023

Unauthenticated | Downloaded 12/11/23 09:05 PM UTC



c. Solution quality

We evaluate the solution quality of an optimal FB-RK(3,2) to
that of SSPRK3 in two test cases of interest, BUJ and WTC5,
comparing the relative vorticity produced by FB-RK(3,2)
with (b1, b2, b3) 5 (0.531, 0.531, 0.313) to that produced by
SSPRK3. The strong stability preserving property of SSPRK3
makes it a good choice for a point of comparison; if FB-RK(3,2)
can produce a solution of comparable quality, we can be confi-
dent that it is a good choice for the SWEs and related problems.

In both cases, shown in Figs. 3 and 4, FB-RK(3,2) produces
solutions of comparable quality to SSPRK3 even with a signif-
icantly increased time step. In BUJ, the two schemes produce
relative velocities that differ by at most 1027. In WTC5, this
difference is on the order of 1028. We also ran both test cases
using RK(3,2) which produced plots, which we omit, that are
visually identical to those given here.

FB-RK(3,2) uses a time step 1.78 and 2.13 times larger that that
used by SSPRK3 on BUJ andWTC5, respectively. Despite taking
about half the wall-clock time and computational resources, FB-
RK(3,2) produces vorticities that are qualitatively equivalent to
SSPRK3. As noted in section 3a, though FB-RK(3,2) is lower or-
der in time than SSPRK3, the produced solutions are qualita-
tively equivalent; likely partially due to lower-order spatial
errors which dominate. In operational configurations of climate-
scale models, such spatial errors are generally dominant, so one
can use a more economical time-stepping scheme like FB-
RK(3,2) without sacrificing model quality.

4. Conclusions

With the goal of producing computationally efficient time-
stepping schemes for the SWEs, we have presented a class
of three-stage second-order Runge–Kutta schemes that use
forward–backward averaging to advance the momentum equa-
tion. The FB weights in these FB-RK(3,2) schemes were then
optimized using a von Neumann–type analysis on the shallow-
water equations linearized about a nonzero mean flow. Even
though it is impossible to perform a similar analysis and opti-
mization on the fully nonlinear SWEs, the results of our linear-
ized analysis clearly result in significant increases in efficiency
when solving nonlinear test problems.

Our optimized FB-RK(3,2) schemes compare favorably
in terms of effective CFL number to an existing forward–
backward scheme in Shchepetkin and McWilliams (2005).
In numerical experiments, the schemes are up to 2.8 times
more computationally efficient than the RK(3,2) scheme
from which they were derived and a popular three-stage
third-order strong stability preserving Runge–Kutta scheme
(Table 2). Despite being significantly more computationally
economical than other schemes, FB-RK(3,2) produces solu-
tions that are of comparable quality to other schemes while
using a time step approximately twice as long (Figs. 3 and 4).
FB-RK(3,2) schemes are generally applicable to geophysi-
cal fluid flows in the ocean and atmosphere, with a range
of Froude numbers, as evidenced by their performance
across a number of relevant test cases. Their use provides an
economical pathway to increasing the computational efficiency

of models of any scope, but particularly models at the climate
scale wherein time-to-solution can be restrictive.

Moving forward, we are interested in adapting FB-
RK(3,2) to a local time-stepping (LTS) scheme similar to
that used in Dawson et al. (2013) or Hoang et al. (2019),
thereby combining the benefits of the CFL performance
of FB-RK(3,2) with the obvious performance implications
of LTS schemes. Another potentially valuable application of
FB-RK(3,2) would be its use as a barotropic solver within a
split-explicit, layered model wherein barotropic and baroclinic
motions are separated and solved by different methods. The
barotropic equations are essentially the SWEs and our work
here clearly demonstrates that FB-RK(3,2) is a good choice for
solving such a system. As the number of MPI processes in-
creases, the communication costs with in the barotropic solver
begin to dominate within a split ocean model. Taking a longer
barotropic time step would help to assuage some of these costs.
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APPENDIX

Supplementary Mathematical Details

a. Local truncation error analysis

What follows is a simplified local truncation error analy-
sis of FB-RK(3,2) that shows that the method is at least
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O[(Dt)2] on a particular problem for any choice of the FB
weights bi. To ease notation and simplify symbolic calcula-
tions, consider a simplified version of the linearized SWEs
(5) with zero mean flow, in one spatial dimension, and
where f 5 0:

­u
­t

52c
­h

­x
,

­h

­t
52c

­u
­x

: (A1)

Assume that u is sufficiently smooth that derivatives up
to sixth order in both t and x exist, and that h is suffi-
ciently smooth that derivatives up to fifth order in both
t and x exist. Further, assume that both u and h are
sufficiently smooth that (­/­t)(­k/­xk)u5 (­k/­xk)(­/­t)u and
(­/­t)(­k/­xk)h 5 (­k/­xk)(­/­t)h for k 5 1, 2. This second as-
sumption gives us

­ku
­tk

5
2ck

­kh

­xk
, if k is odd

ck
­ku
­xk

, if k is even
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (A2)

­kh

­tk
5

2ck
­ku
­xk

, if k is odd

ck
­kh

­xk
, if k is even

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (A3)

for k 5 1, 2. Also, note that in the analysis that follows, the
dependence of u and h on x is suppressed to simplify
notation.

Now, by applying FB-RK(3,2) to (A1), we can write

un11 2 un

Dt
52c

­hn

­x
1

Dt
2
c2
­2un

­x2
2

(Dt)2
6

c3(b3 1 1)­
3hn

­x3

1
(Dt)3
36

c4(24b1b3 1 2b1 1 9b2b3)
­4un

­x4

2
(Dt)4
12

c5b2b3
­5hn

­x5
1

(Dt)5
36

c6b1b2b3
­6un

­x6

5 U(un, hn), (A4)

hn11 2 hn

Dt
52c

­un

­x
1

Dt
2
c2
­2hn

­x2
2

(Dt)2
4

c3b2
­3un

­x3

1
(Dt)3
12

c4b2
­4hn

­x4
2

(Dt)4
36

c5b1b2
­5un

­x5

5 H(un, hn): (A5)

Notice that the right-hand side of (A4) and (A5) are equa-
tions in un and hn; call them U(un, hn) and H(un, hn),
respectively.

The local truncation error for a given time-stepping
scheme can be thought of as the error introduced by said
scheme during one time step, assuming exact data at the
beginning of the time step. For this problem, the local trun-
cation errors in u and h are defined to be the quantities tnu
and tnh such that

u(tn11) 2 u(tn)
Dt

5 U[u(tn), h(tn)] 1 tnu, (A6)

h(tn11) 2 h(tn)
Dt

5 H[u(tn), h(tn)] 1 tnh: (A7)

To calculate tnu and tnh, rearrange (A6) and (A7), then ex-
pand u(tn11) and h(tn11) in t as Taylor polynomials cen-
tered at t 5 tn to get

Dt tnu 5 u(tn11) 2 u(tn) 2 DtU[u(tn), h(tn)]

5 ∑
6

k50

(Dt)k
k!

­ku
­tk

(tn) 1 O[(Dt)7]
{ }
2 u(tn) 2 Dt U[u(tn), h(tn)], (A8)

Dt tnh 5 h(tn11) 2 h(tn) 2 Dt H[u(tn), h(tn)]

5 ∑
5

k50

(Dt)k
k!

­kh

­tk
(tn) 1 O[(Dt)6]

{ }
2 h(tn) 2 DtH[u(tn), h(tn)]: (A9)

Now, simplify (A8) and (A9). Starting with (A8), we get

Dt tnu � ∑
3

k�0
(Dt)k
k!

­ku
­tk

(tn) +O[(Dt)4]
{ }

2 u(tn) 2 DtU[u(tn), h(tn)]

� u(tn) + Dt
­u
­t

(tn)︸�︷︷�︸
�2c

­h

­x
(tn)

+ (Dt)2
2

­2u
­t2

(tn)︸�︷︷�︸
�c2

­2u
­x2

(tn)

+ (Dt)3
6

­3u
­t3

(tn) +O[(Dt)4]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ 2u(tn) + Dt c
­hn

­x
(tn) 2 (Dt)2

2
c2
­2un

­x2
(tn) + (Dt)3

6
c3(b3 + 1)­

3hn

­x3
(tn) +O[(Dt)4]

{ }

� (Dt)3
6

­3u
­t3

(tn) + (Dt)3
6

c3(b3 + 1)­
3h

­x3
(tn) +O[(Dt)4]

{ }
: (A10)
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From (A10), we see that Dt tnu 5O[(Dt)3] no matter the values
of the FB weights, so

tnu 5 O[(Dt)2]: (A11)

Next simplify (A9) in a similar way:

Dt tnh � ∑
3

k�0
(Dt)k
k!

­kh

­tk
(tn) +O[(Dt)4]

{ }
2 h(tn) 2 DtH[u(tn), h(tn)]

� h(tn) + Dt
­h

­t
(tn)︸�︷︷�︸

�2c
­u
­x

(tn)

+ (Dt)2
2

­2h

­t2
(tn)︸�︷︷�︸

�c2
­2h

­x2
(tn)

+ (Dt)3
6

­3h

­t3
(tn) +O[(Dt)4]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
+ 2h(tn) + Dt c

­un

­x
(tn) 2 (Dt)2

2
c2
­2hn

­x2
(tn) + (Dt)3

4
c3b2

­3un

­x3
(tn) +O[(Dt)4]

{ }

� (Dt)3
6

­3h

­t3
(tn) + (Dt)3

4
c3b2

­3u
­x3

(tn) +O[(Dt)4]
{ }

: (A12)

From (A12), we see that with no assumptions on the FB
weights, we have Dttnh 5O[(Dt)3], so

tnh 5 O[(Dt)2]: (A13)

b. Linearization of the shallow-water equations

Here, we present the derivation of (4), the linearized
SWEs centered about a nonzero mean flow. The nonlinear
SWEs on a rotating sphere are given by

­u
^̂̂̂̂

­t
1 (= 3 u

^̂̂̂̂

1 fk) 3 u
^̂̂̂̂

52=
|u^̂̂̂̂ |2
2

2 g=h
^̂̂̂̂

,

­h
^̂̂̂̂

­t
1 = ? (h^̂̂̂̂ u

^̂̂̂̂ ) 5 0, (A14)

where u
^̂̂̂̂ (x, y, t)5 [u^̂̂̂̂ (x, y, t), y^̂̂̂̂ (x, y, t)] is the horizontal fluid

velocity, x and y are the spatial coordinates, t is the time
coordinate, f is the Coriolis parameter, g is the gravitational
constant, and h

^̂̂̂̂

is the fluid thickness.
To linearize (A14) about a nonzero mean flow, assume

that

u
^̂̂̂̂ (x, y, t) 5 ~U 1 ~u(x, y, t), (A15)

h
^̂̂̂̂ (x, y, t) 5 H 1 h̃(x, y, t), (A16)

where ~U 5 (Ũ , Ṽ) is the constant (with respect to time and
space) mean horizontal fluid velocity, ~u 5 [ũ(x, y, t), ỹ (x, y, t)]
is a small perturbation of ~U, H is the constant (with respect to
time and space) fluid thickness when at rest, and h̃ 5 h̃(x, y, t)
is a small perturbation of H. In both cases, small means that
the quantities themselves, as well as their derivatives, are negli-
gible when multiplied together or squared.

Now, we make the substitutions u
^̂̂̂̂

5 ~U 1 ~u and h
^̂̂̂̂

5H1 h̃
and simplify term by term. The kinetic energy term becomes

2=
u
^̂̂̂̂ 2

2
52=

1
2
(u^̂̂̂̂ 2

1 y
^̂̂̂̂ 2)

52=
1
2
(Ũ2 1 2Ũũ 1 ũ2 1 Ṽ2 1 2Ṽ ỹ 1 ỹ 2)

52Ũ=ũ 2 Ṽ=ỹ 2
1
2
(=ũ2 1 =ỹ 2)

’2Ũ=ũ 2 Ṽ=ỹ

5 ~U ? =ũ, (A17)

where =~u is the Jacobian matrix,

­xũ ­xỹ
­yũ ­yỹ

( )
,

and ~U ?=ũ denotes a 2 3 1 column vector wherein the ith
entry is the dot product of ~U with the ith row of =~u. The
potential vorticity and Coriolis term becomes

(= 3 u
^̂̂̂̂ + fk) 3 u

^̂̂̂̂ � ­y
^̂̂̂̂

­x
2

­u
^̂̂̂̂

­y

( )
k + fk

[ ]
3 u

^̂̂̂̂

� i 2y
^̂̂̂̂ ­y

^̂̂̂̂

­x
2

­u
^̂̂̂̂

­y
+ f

( )[ ]
+ j u

^̂̂̂̂ ­y
^̂̂̂̂

­x
2

­u
^̂̂̂̂

­y
+ f

( )[ ]

� i 2f (Ṽ + ỹ ) 2 Ṽ
­ỹ

­x
2

­ũ
­y

( )
2 ỹ

­ỹ

­x
2

­ũ
­y

( )[ ]

+ j f (Ũ + ũ) + Ũ
­ỹ

­x
2

­ũ
­y

( )
+ ũ

­ỹ

­x
2

­ũ
­y

( )[ ]

’ i 2f (Ṽ + ỹ ) 2 Ṽ
­ỹ

­x
2

­ũ
­y

( )[ ]
+ j f (Ũ + ũ) + Ũ

­ỹ

­x
2

­ũ
­y

( )[ ]
� f ( ~U + ~u)⊥ + z̃ ~U

⊥
, (A18)

where z̃ 5 (­ỹ /­x)2 (­ũ/­y) is the vertical component of the
vorticity =3 ~u. The thickness gradient becomes

2g=h
^̂̂̂̂

52g=(H 1 h̃)
52g=h̃ ? (A19)
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Finally, the mass advection term becomes

= ? (h^̂̂̂̂u^̂̂̂̂ ) 5 = ? (H ~U 1 H~u 1 h̃ ~U 1 h̃~u)
5 = ? (H~u 1 h̃ ~U 1 h̃~u)
’ H(= ? ~u) 1 = ? (h̃ ~U) ? (A20)

So, linearized SWEs with a nonzero mean flow are given by

­~u

­t
1 f ( ~U 1 ~u)⊥ 1 z̃ ~U

⊥
52~U ?=~u 2 g=h̃

­h̃
­t

1 H(= ? ~u) 1 = ? (h̃ ~U) 5 0: (A21)

c. Arakawa C-grid discretization

Figure A1 shows an example of a rectangular, staggered
Arakawa C-grid Arakawa and Lamb (1977). Here, the mass
variable h is computed at cell centers and the normal com-
ponents of velocity u and y are computed at the center of
cell edges.

To see how to Eqs. (6) and (7) are obtained, consider
the following example wherein we compute a derivative
in x at the point (x1, y1) in Fig. A1. On this grid, the de-
rivative ­/­x of some quantity can be approximated by
taking a centered difference of values at the two nearest
points:

­

­x
[exp(ikx1 1 i‘y1)] 5

exp ik x1 1
Dx
2

( )
1 i‘y1

[ ]
2 exp ik x1 1

Dx
2

( )
1 i‘y1

[ ]
Dx

5
eik(Dx/2) 2 e2ik(Dx/2)

Dx
exp(ikx1 1 i‘y1)

5

i2sin k
Dx
2

( )
Dx

exp(ikx1 1 i‘y1) ?

An identical calculation hold for derivatives in y.
To calculate the Coriolis terms, we need data for u at y

points, and for y at u points, called uy and yu, respectively. To

see how Eqs. (8) and (9) are obtained, consider the following
example wherein we calculate yu at (x2, y2) in Fig. A1 by tak-
ing the average of y data at the four nearest y points:

FIG. A1. An example Arakawa C-grid.
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yu(x2, y2, t) �
1
4
ŷ (k, ‘, t) exp ik x2 +

Dx
2

( )
+ i‘ y2 +

Dy
2

( )[ ]
+ exp ik x2 +

Dx
2

( )
2 i‘ y2 +

Dy
2

( )[ ]{

+ exp ik x2 2
Dx
2

( )
+ i‘ y2 +

Dy
2

( )[ ]
+ exp ik x2 2

Dx
2

( )
+ i‘ y2 2

Dy
2

( )[ ]}

� 1
4

exp ik
Dx
2

+ i‘
Dy
2

( )
+ exp ik

Dx
2

2 i‘
Dy
2

( )
+ exp 2ik

Dx
2

+ i‘
Dy
2

( )
+ exp 2ik

Dx
2

2 i‘
Dy
2

( )[ ]
ŷ (k, ‘, t)exp(ikx2 + i‘y2)

� 1
4

4 cos k
Dx
2

( )
cos ‘

Dy
2

( )[ ]
ŷ (k, ‘, t)exp(ikx2 + i‘y2)

� cos k
Dx
2

( )
cos ‘

Dy
2

( )
ŷ (k, ‘, t)exp(ikx2 + i‘y2):

An identical calculation holds for uy.

d. Formulation of G̃

Assume that the mean flow U in the linearized SWEs (5)
is taken to be zero, and apply a Fourier transform in space.
The resulting equations can be written as

­

­t

û

ŷ

ĥ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 5

0 f 2ick

2f 0 2 ic‘

2ick 2ic‘ 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
û

ŷ

ĥ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠: (A22)

These equations are spatially continuous counterparts
to (10).

The general solution to this system is given by

ŵ(t) 5 eAtŵ(0), (A23)

where ŵ(t)5 [û(t),ŷ (t),ĥ(t)]T and A is as given in (18). Now,
consider the general solution of the system at time t 5 Dt.
Then,

ŵ(Dt) 5 eADtŵ(0): (A24)

Multiplying initial data ŵ(0)5 ŵ
0 by the numerical amplifi-

cation matrix G defined in (12) returns the numerical
solution after one time step. Assume that the FB-RK(3,2)
scheme produces an exact solution, that is, assume
Gŵ

0
5 ŵ(Dt). Then

Gŵ
0
5 eADtŵ0

: (A25)

This holds for any choice of initial data ŵ
0. Take ŵ

0
5 ei,

where ei is the ith standard basis vector for i 5 1, 2, 3 to get

Gei 5 eADtei for i 5 1, 2, 3: (A26)

Because Gei and eADtei are just the ith columns of G and
eADt, respectively, it follows that G 5 eADt. The reverse im-
plication is trivial. To simplify notation, we write

G̃ :5 eADt: (A27)

e. Constructing balanced initial conditions

While the shallow-water cases described by Galewsky
et al. (2004) and Williamson et al. (1992) have been success-
fully implemented for various structured grid models, we
briefly describe an initialization procedure that is used to pro-
duce geostrophically balanced initial conditions for the un-
structured TRiSK-like model used in this study. Introducing a
matrix–vector form of the nonlinear SWE system presented in
(A14)

­u
­t

1 (Cu 1 f )u⊥ 52G[g(h 1 zb) 1 K],
­h
­t

1 D(uh) 5 0,

K 5
1
2
|u|2, (A28)

where D, G, C are sparse linear operators encoding the action
of divergence, gradient and curl on a given discrete vector, as
per Ringler et al. (2010). A balanced thickness distribution h0

can be found for a given velocity field u0 by setting ­u/­t5 0
and taking the divergence of momentum tendencies:

K0 5
1
2
u0
∣∣ ∣∣2,

D[(Cu0 1 f )(u0)⊥ 1 GK0] 52gDGh0: (A29)

Recognizing the product DG5 L is an approximation of the
continuous Laplacian =2, (A29) can be seen as an elliptic
problem that can be solved by inverting the system of linear
equations:

h0 52
1
g
L21D[(Cu0 1 f )(u0)⊥ 1 GK0] ? (A30)

In this study we solve (A30) using SciPy’s (Virtanen et al.
2020) gcrotmk iterative solver. Compared to the evaluation
of analytical profiles, the construction of initial conditions
through the solution of (A30) is agnostic to details of the
computational mesh used and ensures the discrete state is
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balanced with respect to the spatial operators used to ad-
vance the flow. This approach has proved robust for the un-
structured model configurations considered in this study.
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