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ABSTRACT: In this paper, we introduce high-order tensor-train (TT) finite volume methods for

the Shallow Water Equations (SWEs). We present the implementation of the 3rd order Upwind and

the 5th order Upwind and Weighted Essentially Non-Oscillatory (WENO) reconstruction schemes

in the TT format. It is shown in detail that the linear upwind schemes can be implemented by directly

manipulating the TT cores while the WENO scheme requires the use of TT cross interpolation for

the nonlinear reconstruction. In the development of numerical fluxes, we directly compute the flux

for the linear SWEs without using TT rounding or cross interpolation. For the nonlinear SWEs

where the TT reciprocal of the shallow water layer thickness is needed for fluxes, we develop an

approximation algorithm using Taylor series to compute the TT reciprocal. The performance of

the TT finite volume solver with linear and nonlinear reconstruction options is investigated under

a physically relevant set of validation problems. In all test cases, the TT finite volume method

maintains the formal high-order accuracy of the corresponding traditional finite volume method.

In terms of speed, the TT solver achieves up to 124x acceleration of the traditional full-tensor

scheme.
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1. Introduction23

As computer architectures evolve, new algorithms are often needed to make the best use of the24

latest equipment. For example, in the 1990s there was a major transition from vector supercom-25

puters to distributed memory clusters, and internode communication became the slowest part of a26

simulation. In global atmospheric models this spurred a transition from spectral methods (Kiehl27

et al. 1998), which require global communications for the transforms between physical and spectral28

space, to methods such as finite volume (Thuburn et al. 2009) and spectral element (Dennis et al.29

2005), which only require local communication with nearby processors.30

In recent years there has been another major change in the landscape of supercomputer architec-31

tures, as the main driver for sales became machine learning (ML) and artificial intelligence (AI)32

applications. Tensor cores are a new generation of chips specifically designed for AI and deep33

learning, such as the NVIDIA Volta, Turing, and Ampere classes of GPUs. Because AI, rather than34

computational physics, is driving the direction of commodity architecture, developers of numerical35

methods must seek out algorithms that are performant on this new hardware. The AI revolution36

has also spurred the development of libraries that are specifically tuned to run AI algorithms, such37

as Neural Networks, on tensor cores. Here we present recently developed numerical methods that38

leverage tensor networks. These methods manipulate large-scale data based on generalizations of39

the singular value decomposition to higher dimensional tensor arrays.40

A second driver of new algorithm development is to greatly increase the speed and resolution41

of global climate simulations. High-resolution global simulations are now typically 6km to 10km42

in the ocean and atmosphere (Caldwell et al. 2019) and the latest cloud-resolving simulations are43

at 3km resolution (Donahue et al. 2024). This involves millions of horizontal cells and up to 12844

vertical layers. In addition, climate research requires long simulations for spin-up, and ensembles45

of simulations to investigate the intrinsic variability of the climate system (Kay et al. 2015). All46

these factors taken together produce the “curse of dimensionality”, where simulation campaigns in47

climate science require many months on large supercomputers.48

Tensor Networks (TNs) (Cichocki 2014) are a promising new approach that mitigate the effects49

of the curse of dimensionality, and may also take advantage of specialized AI hardware. TNs50

are a generalization of matrix factorizations to higher dimensions, whereby multidimensional51

data structures (tensors) are decomposed into manageable blocks. The computations normally52
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performed on the large dataset (e.g. finite differences) can alternatively be performed on these53

smaller tensor components, drastically reducing computational costs. The most popular TN method54

is known as the Tensor Train (TT). In TT format, the large dataset is decomposed into a sequence55

of lower-dimensional tensors (cores), linked together in a chain (train), to efficiently represent and56

manipulate large-scale data (Oseledets and Tyrtyshnikov 2010).57

TN techniques show great promise to attack the curse of dimensionality across a large range of58

problems. Just in the last few years, tensor methods have been used to model the Navier-Stokes59

equations in a number of standard test cases: A backward-facing step (Demir et al. 2024), a lid-60

driven cavity (Kiffner and Jaksch 2023), a turbulent flow in a channel (von Larcher and Klein 2019),61

and a 3-dimensional Taylor-Green vortex (Gourianov 2022). In recent work, we used TT methods62

to accelerate compressible flow simulations by up to 1000 times (Danis et al. 2025) and solved63

the time-independent Boltzmann neutron transport equation with tensor networks (Truong et al.64

2024). These successes show that a tensor-based approach to fluids problems is both possible and65

promises greatly increased model efficiency. There are similarities between the methods presented66

here to those in (Danis et al. 2025), but the present work serves to compliment (Danis et al. 2025)67

by extending these TN techniques and results to models of oceanic or atmospheric circulation,68

which has not been done to date. A discussion comparing methods from (Danis et al. 2025) to69

the those in present work can be found in Section 4b. Successful compression and speedup of70

geophysical fluid simulations via TN has the promise to radically alter the landscape of weather71

and climate modeling, allowing researchers to explore higher resolutions and larger ensembles.72

Any new numerical method for atmosphere and ocean models must progress through a sequence73

of verification steps in order to be accepted by the community. The shallow water equations (SWEs)74

are a reduced equation set used as a first step for modeling geophysical fluids at the climate scale75

(Thuburn et al. 2009; Weller et al. 2009; Archibald et al. 2011; Lilly et al. 2023). In particular,76

the SWEs serve as a suitable starting point for methods targeting layered Boussinesq models,77

which can be thought of as a vertical stack of shallow water models with additional vertical and78

surface processes. The SWEs contain the relevant dynamics of atmospheric and oceanic flows: the79

Coriolis force and pressure gradient term for geostrophic balance, as well as horizontal advection of80

momentum and mass. At the same time, the SWEs are simple enough for rapid code development.81

Critically, the SWEs may be tested against exact solutions during model development (Bishnu et al.82
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2024), which is not the case for the subsequent levels of complexity in the development sequence83

(Petersen et al. 2015). The key assumptions of the SWEs are that horizontal scales of motion are84

much larger than the vertical, which means it is hydrostatic, and that the fluid is incompressible85

so that it has uniform density (Cushman-Roisin and Beckers 2011). This conveniently avoids the86

complexities of the equation of state, moist dynamics and clouds in the atmosphere, and vertical87

advection. Published test sets using the SWEs have become an essential component of model88

development and verification (Williamson et al. 1992; Calandrini et al. 2021).89

This article assesses the computational advantages of TN in modeling the SWEs across a range90

of test cases. In particular, we focus on TT methods for high-order finite volume methods for the91

SWEs. The paper is organized as follows. In Section 2, we review the SWEs and our high-order92

methods for solving them. Section 3 we cover the basics of the TT decomposition, and in Section 493

we discuss how the finite volume scheme can be formulated in the TT format. We end with Section94

5 covering the results for a series of test cases.95

2. Governing Equations and the Numerical Method96

In this section, we will review the shallow water equations (SWEs) and the finite volume97

method used to solve these equations. This discussion will only involve essential information for98

a typical finite volume implementation on traditional grids to lay the ground for the tensor-train99

implementation.100

a. Shallow Water Equations101

In this study, we consider both linear and nonlinear SWEs with a flat bottom topography. Both102

equations are solved in the conservative form,103

𝜕𝑈𝑈𝑈

𝜕𝑡
+ 𝜕𝐹𝐹𝐹
𝜕𝑥
+ 𝜕𝐺𝐺𝐺
𝜕𝑦

= 𝑆𝑆𝑆 , (1)

where𝑈𝑈𝑈 is the vector of conserved variables, 𝐹𝐹𝐹,𝐺𝐺𝐺 are the fluxes in 𝑥 and 𝑦 directions, and 𝑆𝑆𝑆 is the104

source term.105
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In the linear case, Equation (1) is solved with106

𝑈𝑈𝑈 =

©­­­­«
𝜂

𝑢

𝑣

ª®®®®¬
, 𝐹𝐹𝐹 =

©­­­­«
𝐻𝑢

𝑔𝜂

0

ª®®®®¬
, 𝐺𝐺𝐺 =

©­­­­«
𝐻𝑣

0

𝑔𝜂

ª®®®®¬
, 𝑆𝑆𝑆 =

©­­­­«
0

𝑓 𝑣

− 𝑓 𝑢

ª®®®®¬
, (2)

where the vector of conserved variables,𝑈𝑈𝑈, consists of the surface elevation 𝜂, the 𝑥-velocity 𝑢 and107

the 𝑦-velocity 𝑣. Furthermore, 𝐻 is the mean depth of the fluid at rest, 𝑓 is the Coriolis parameter,108

and 𝑔 is the acceleration of gravity.109

In the nonlinear case, Equation (1) is solved with110

𝑈𝑈𝑈 =

©­­­­«
ℎ

ℎ𝑢

ℎ𝑣

ª®®®®¬
, 𝐹𝐹𝐹 =

©­­­­«
ℎ𝑢

ℎ𝑢2 + 1
2𝑔ℎ

2

ℎ𝑢𝑣

ª®®®®¬
, 𝐺𝐺𝐺 =

©­­­­«
ℎ𝑣

ℎ𝑢𝑣

ℎ𝑣2 + 1
2𝑔ℎ

2

ª®®®®¬
, 𝑆𝑆𝑆 =

©­­­­«
0

𝑓 ℎ𝑣

− 𝑓 ℎ𝑢

ª®®®®¬
, (3)

where ℎ is the fluid layer thickness.111

b. High-order Finite Volume Method for Hyperbolic Conservation Laws112

For simplicity, let us consider the 2-dimensional scalar hyperbolic conservation law,113

𝜕𝑢

𝜕𝑡
+ 𝜕 𝑓 (𝑢)

𝜕𝑥
+ 𝜕𝑔(𝑢)

𝜕𝑦
= 0 , (4)

where 𝑢 is a generic conserved variable (not to be confused with the 𝑥-velocity), 𝑓 (𝑢) and 𝑔(𝑢) are114

fluxes in 𝑥 and 𝑦 directions respectively, and we assume that proper initial and boundary conditions115

are provided. On a uniform mesh with grid spacing Δ𝑥 and Δ𝑦 in 𝑥 and 𝑦 directions, a finite volume116

method solves Equation (4) for the cell averages of 𝑢 in a given cell (𝑖, 𝑗),117

�̃�𝑖, 𝑗 =
1

Δ𝑥Δ𝑦

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

∫ 𝑦 𝑗+1/2

𝑦 𝑗−1/2

𝑢 d𝑥 d𝑦 , (5)

where 𝑢 denotes cell average in 𝑥 and �̃� denotes cell average in 𝑦.118
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In this spirit, the semi-discrete cell-averaged form of Equation (4) for a cell (𝑖, 𝑗) is given as119

𝑑�̃�𝑖, 𝑗

𝑑𝑡
+ 1
Δ𝑥Δ𝑦

∫ 𝑦 𝑗+1/2

𝑦 𝑗−1/2

(
𝑓

(
𝑢

(
𝑥𝑖+1/2, 𝑦

))
− 𝑓

(
𝑢

(
𝑥𝑖−1/2, 𝑦

)))
d𝑦

+ 1
Δ𝑥Δ𝑦

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

(
𝑔

(
𝑢

(
𝑥, 𝑦 𝑗+1/2

))
−𝑔

(
𝑢

(
𝑥, 𝑦 𝑗−1/2

)))
d𝑥 = 0 ,

(6)

which can be approximated as120

𝑑�̃�𝑖, 𝑗

𝑑𝑡
+
�̂�𝑖+1/2, 𝑗 − �̂�𝑖−1/2, 𝑗

Δ𝑥
+
�̂�𝑖, 𝑗+1/2− �̂�𝑖, 𝑗−1/2

Δ𝑦
= 0 , (7)

where the numerical fluxes �̂�𝑖±1/2, 𝑗 and �̂�𝑖, 𝑗±1/2 approximate the surface integrals by the 1-121

dimensional Gauss-Legendre quadrature rule with quadrature points 𝛿𝑚 and weights 𝑤𝑚:122

�̂�𝑖±1/2, 𝑗 =
∑︁
𝑚

𝑤𝑚 �̂�

(
𝑢−
𝑖±1/2,𝑦 𝑗+𝛿𝑚Δ𝑦, 𝑢

+
𝑖±1/2,𝑦 𝑗+𝛿𝑚Δ𝑦

)
,

�̂�𝑖, 𝑗±1/2 =
∑︁
𝑚

𝑤𝑚 �̂�

(
𝑢−
𝑥𝑖+𝛿𝑚Δ𝑥, 𝑗±1/2, 𝑢

+
𝑥𝑖+𝛿𝑚Δ𝑥, 𝑗±1/2

)
,

(8)

where �̂� (𝑢−, 𝑢+) and �̂�(𝑢−, 𝑢+) denote the local Lax-Friedrichs flux. In the 𝑥-direction, for example,123

the local Lax-Friedrichs flux is defined as124

�̂� (𝑢−, 𝑢+) = 1
2

(
𝑓 (𝑢−) + 𝑓 (𝑢+)

)
− 𝜆

2
(
𝑢+−𝑢−

)
, (9)

where 𝑢± are point-wise values at the cell interfaces approximated by a high-order reconstruction125

method from the cell-averages �̃�𝑖, 𝑗 and 𝜆 = max𝑢∈(𝑢− ,𝑢+) | 𝑓 ′(𝑢) |.126

c. High-order Reconstructions127

In this paper, we implement the 3rd order upwind-biased (Upwind3), 5th order upwind-biased128

(Upwind5), and 5th order Weighted Essentially Non-Oscillatory (WENO5) reconstruction methods.129

Upwind methods are based on solution reconstruction using the ideal weights obtained from the130

best polynomial approximation that matches the cell-averages in the relevant computational stencil.131

However, they become extremely oscillatory when the numerical solution develops discontinuities,132
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such as shock waves, which makes the numerical solution eventually unstable. For those cases,133

WENO methods provide a robust numerical solution near discontinuities while maintaining the134

high-order accuracy in the smooth regions of the solution by blending the ideal reconstruction135

weights with smoothness indicators to obtain a nonlinear reconstruction. We refer the interested136

readers to (Shu 1998) for more details.137

To obtain a high-order 2-dimensional finite volume discretization, we follow the dimension-by-138

dimension reconstruction method in (Shu 1998; Shi et al. 2002). This involves two 1-dimensional139

reconstruction steps for each direction. In Figure 1, the reconstruction procedure for the 3rd order140

reconstruction in the 𝑥-direction is depicted, for which we only use two Gauss quadrature points141

for approximating the surface integrals. Let ·̄ and ·̃ denote cell averages in the 𝑥- and 𝑦-directions142

respectively. Then, starting with the cell average �̃�𝑖, 𝑗 , Step 1 is to perform the first 1-dimensional143

reconstruction in the 𝑥-direction at 𝑥 = 𝑥𝑖±1/2; this gives 1-dimensional cell averages �̃�±
𝑖∓1/2. Then in144

Step 2, we perform a second 1-dimensional reconstruction, now in the 𝑦-direction, to obtain point-145

wise values 𝑢±
𝑖∓1/2,𝑦 𝑗+𝛿2Δ𝑦

at the Gauss quadrature points at 𝑥 = 𝑥𝑖±1/2 and 𝑦 ∈ {𝑦 𝑗 +𝛿1Δ𝑦, 𝑦 𝑗 +𝛿2Δ𝑦}.146

�̃�𝑖, 𝑗
�̃�±
𝑖∓ 1

2
(𝑦)

𝑢±
𝑖∓ 1

2 ,𝑦 𝑗+𝛿1Δ𝑦

𝑢±
𝑖∓ 1

2 ,𝑦 𝑗+𝛿2Δ𝑦Step 1 Step 2

Fig. 1: Step-by-step 3rd order reconstruction from cell averages in the 𝑥-direction.

The 5th order reconstruction Steps 1 and 2 for Upwind5 and WENO5 are similar; we present the147

details for all three reconstructions in Appendix A1.148

d. Finite Volume Method for the Shallow Water Equations149

In this study, we solve the cell-averaged SWEs,150

𝜕𝑈𝑈𝑈𝑖, 𝑗

𝜕𝑡
+
𝐹𝐹𝐹𝑖+1/2, 𝑗 −𝐹𝐹𝐹𝑖−1/2, 𝑗

Δ𝑥
+
𝐺𝐺𝐺𝑖, 𝑗+1/2−𝐺𝐺𝐺𝑖, 𝑗−1/2

Δ𝑦
= �̃�𝑆𝑆𝑖, 𝑗 , (10)

8



on a uniform Cartesian mesh using the finite volume method where the fluxes vectors are computed151

by the Gauss-Legendre quadrature rule152

𝐹𝐹𝐹𝑖±1/2, 𝑗 =
∑︁
𝑚

𝑤𝑚𝐹𝐹𝐹

(
𝑈𝑈𝑈−

𝑖±1/2,𝑦 𝑗+𝛿𝑚Δ𝑦,𝑈𝑈𝑈
+
𝑖±1/2,𝑦 𝑗+𝛿𝑚Δ𝑦

)
,

𝐺𝐺𝐺𝑖, 𝑗±1/2 =
∑︁
𝑚

𝑤𝑚𝐺𝐺𝐺

(
𝑈𝑈𝑈−

𝑥𝑖+𝛿𝑚Δ𝑥, 𝑗±1/2,𝑈𝑈𝑈
+
𝑥𝑖+𝛿𝑚Δ𝑥, 𝑗±1/2

)
,

(11)

with the Local Lax-Friedrichs flux153

𝐹𝐹𝐹
(
𝑈𝑈𝑈−,𝑈𝑈𝑈+

)
=

1
2

(
𝐹𝐹𝐹 (𝑈𝑈𝑈−) +𝐹𝐹𝐹 (𝑈𝑈𝑈+)

)
− 𝜆𝐹

2
(
𝑈𝑈𝑈+−𝑈𝑈𝑈−

)
,

𝐺𝐺𝐺
(
𝑈𝑈𝑈−,𝑈𝑈𝑈+

)
=

1
2

(
𝐺𝐺𝐺 (𝑈𝑈𝑈−) +𝐺𝐺𝐺 (𝑈𝑈𝑈+)

)
− 𝜆𝐺

2
(
𝑈𝑈𝑈+−𝑈𝑈𝑈−

)
,

(12)

where 𝜆𝐹 and 𝜆𝐺 are the maximum eigenvalues of the flux Jacobians
��𝜕𝐹𝐹𝐹/𝜕𝑈𝑈𝑈�� and

��𝜕𝐺𝐺𝐺/𝜕𝑈𝑈𝑈��,154

respectively. The high-order reconstruction is performed by applying the procedures discussed in155

Section 2c to𝑈𝑈𝑈 in a component-by-component fashion.156

3. Tensor Train Decomposition157

In this section we briefly introduce the tensor notation and the tensor train manipulation tech-158

niques we apply in this work. The goal of the machinery introduced in this section and the methods159

described in Section 4 is to use the tensor train format to obtain an approximation to the model160

state that is significantly compressed, then to evolve that compressed state forward in time. By161

performing all necessary operations in this compressed space, we can greatly reduce the number162

of floating point operations required to advance the model, thereby obtaining significant compu-163

tational speedup. Figure 2 serves to provide a high-level explanation of the goal of tensor train164

methods like the ones used here.165

For clarity, in the context of this work, a tensor is exactly a multi-dimensional array of arbitrary166

dimension, consisting of real entries, subject to nonlinear point-wise operations and linear transfor-167

mations. For a positive integer 𝑑 and a sequence of mode sizes 𝑛1, 𝑛2, . . . , 𝑛𝑑 , a tensorX of the given168

shape is an element ofR𝑛1×𝑛2×···×𝑛𝑑 . In this way, a 𝑛1×𝑛2 matrix is a 2-dimensional tensor inR𝑛1×𝑛2
169

and a length 𝑛1 vector is a 1-dimensional tensor in R𝑛1 . A 𝑑-dimensional tensor in R𝑛1×𝑛2×···×𝑛𝑑 is170
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𝜕𝑢

𝜕𝑡
= Φ(𝑢, 𝑡)

Continuous System

𝜕𝑢1

𝜕𝑡
= Φ1(𝑢𝑢𝑢, 𝑡)

𝜕𝑢2

𝜕𝑡
= Φ2(𝑢𝑢𝑢, 𝑡)
...

𝜕𝑢𝐽

𝜕𝑡
= Φ𝐽 (𝑢𝑢𝑢, 𝑡)

Semi-discrete System

𝑢𝑢𝑢0, 𝑢𝑢𝑢1, · · · , 𝑢𝑢𝑢𝑁
Solution

Tensorized View

Tensor Train System

ADiscretize
in space

BTime-step
full system

C

View as
tensors

DCompress
with TT

E

Time-step
compressed

system

Fig. 2: Tensor train methods find speedups by avoiding time-stepping the full discrete system
directly. Standard methods involve (A) discretizing the PDE in space, followed by (B) the use of
an iterative time-stepping algorithm. Tensor train methods can be understood to instead (C) treat
the discrete system as a large dimensional tensor, on which (D) a tensor train is fit. Speedup is
found by (E) time-stepping in the reduced dimensional latent space of the tensor train, which scales
linearly with the size of the problem instead of polynomially as in (B).

indexed by a multi-index 𝑖𝑖𝑖 = (𝑖1, 𝑖2, . . . , 𝑖𝑑), where 𝑖𝑘 ∈ {1,2, . . . , 𝑛𝑘 } for all 𝑘 = 1,2, . . . , 𝑑; this is171

written as X(𝑖1, 𝑖2, . . . , 𝑖𝑑) ∈ R.172

a. Tensor Train173

Tensor train, or the TT-format of a tensor, represents a tensor of arbitrary dimension as a product174

of so-called cores, which are either 2- or 3-dimensional tensors (Oseledets and Tyrtyshnikov 2010).175

Generally, a TT representation X𝑇𝑇 of a 𝑑-dimensional tensor X is defined as176

X𝑇𝑇 (𝑖1, . . . , 𝑖𝑑) =
𝑟1,...,𝑟𝑑−1∑︁
𝛼1,...,𝛼𝑑−1

G1(1, 𝑖1, 𝛼1)G2(𝛼1, 𝑖2, 𝛼2) . . .G𝑑−1(𝛼𝑑−2, 𝑖𝑑−1, 𝛼𝑑−1)G𝑑 (𝛼𝑑−1, 𝑖𝑑 ,1) ,

(13)

where ∥X𝑇𝑇 −X∥𝐹 < 𝜀, for a prescribed value of 𝜀. Here, ∥ · ∥𝐹 is the Frobenius norm. The entries177

of the integer array 𝑟𝑟𝑟 = [𝑟1, . . . , 𝑟𝑑−1] are called TT-ranks, and G𝑘 are called TT-cores. Equivalently,178
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we can also denote the TT-format by the multiple matrix product,179

X𝑇𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑑) =𝐺𝐺𝐺1(𝑖1)𝐺𝐺𝐺2(𝑖2) . . .𝐺𝐺𝐺𝑑 (𝑖𝑑) , (14)

where each term
(
𝐺𝐺𝐺𝑘 (𝑖𝑘 )

)
𝛼𝑘−1,𝛼𝑘

, 𝑖𝑘 = 1,2, . . . , 𝑛𝑘 , 𝑘 = 1,2, . . . , 𝑑, is a matrix of size 𝑟𝑘−1×𝑟𝑘 (where180

𝑟0 = 𝑟𝑑 = 1). Therefore, the G𝑘 (:, 𝑖𝑘 , :) are a set of matrix slices 𝐺𝐺𝐺𝑘 (𝑖𝑘 ) that are labeled with the181

single index 𝑖𝑘 . Since each TT-core only depends on a single mode index of the full tensor X, e.g.,182

𝑖𝑘 , the TT-format effectively embodies a discrete separation of variables.183

Assuming that 𝑛𝑘 = O(𝑛) and 𝑟𝑘 = O(𝑟) for some non-negative integers 𝑛 and 𝑟, and for all 𝑘 =184

1,2, . . . , 𝑑, the total number of elements that TT-format stores is proportional toO(2𝑛𝑟+ (𝑑−2)𝑛𝑟2),185

which is linear with the number of dimensions 𝑑. In this way, the TT-ranks 𝑟𝑟𝑟 = [𝑟1, . . . , 𝑟𝑑−1]186

quantify the effectiveness of the TT compression. When the TT-ranks are relatively small with187

respect to the problem size, a TT-based approach is referred to as a low-rank approximation188

(Bachmayr 2023).189

In the case that X is a matrix, its TT-format is simplified to the following,190

X𝑇𝑇 (𝑖1, 𝑖2) =𝐺𝐺𝐺1(𝑖1)𝐺𝐺𝐺2(𝑖2) , (15)

Given that the shallow water problems we investigate in this work have two spatial dimensions,191

this decomposition will be the one we use to represent the solutions at each time step.192

Note that both a tensor X and its TT representation X𝑇𝑇 share the same set of indices; if X193

represents data at a given set of grid points, X𝑇𝑇 also represents data at the same set of grid points.194

The difference is that the TT representation does not necessarily explicitly store data at each grid195

point, but rather returns these data via the tensor contraction operation given in Equation (13). In196

this way, both X and X𝑇𝑇 share the same shape, but do not explicitly store the same number of197

elements.198

Tensor train is an advantageous low rank format for many reasons, but perhaps one of the most199

important is its compatibility with basic linear operations. For example, arithmetic operations such200

as addition, scalar multiplication, and pointwise multiplication can be performed on the TT cores201

without the need to form the complete tensor (Oseledets 2011a). Importantly, tensor trains are also202

compatible with linear transformations via linear operators. That is, given a tensor X and a linear203
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operator 𝐿 such that 𝐿 (X) =Y, one can form a matrix product operator (MPO) in the TT format204

of 𝐿, call this 𝐴𝐿 , such that 𝐴𝐿X𝑇𝑇 = Y𝑇𝑇 . Here, the operation 𝐴𝐿X𝑇𝑇 is a generalization of the205

matrix product that is computed entirely in the TT format (Oseledets 2011a).206

However, when these basic operations are performed in the TT format, the rank of the resulting207

TT will grow relative to that of the input TTs. To reap the benefit of low rank compression for208

iterative schemes, a method known as TT rounding has been developed. We discuss this next.209

b. TT Rounding210

Given a tensor, X, represented in TT-format, X𝑇𝑇 , with TT-ranks 𝑟𝑟𝑟 =
[
𝑟1, . . . , 𝑟𝑑−1

]
, one often211

wishes to find an even more compact TT representation Y𝑇𝑇 , with TT-ranks 𝑟𝑟𝑟′ =
[
𝑟′1, . . . , 𝑟

′
𝑑−1

]
212

such that 𝑟′
𝑖
≤ 𝑟𝑖 for 𝑖 = 1, . . . , 𝑑 − 1. This is because, as discussed above, as certain common213

operations are applied to TTs, the ranks of resultant TTs can quickly grow, causing the benefits214

of the initial compression to disappear. To obtain a Y𝑇𝑇 such that ∥X𝑇𝑇 −Y𝑇𝑇 ∥𝐹 < 𝜀𝑇𝑇 for a215

prescribed 𝜀𝑇𝑇 , one can apply a so-called TT rounding procedure. This type of procedure is also216

called truncation or recompression, and is discussed in detail in (Oseledets 2011a). To illustrate217

the procedure in a simple case, consider the TT of a matrix like that in Equation (15). In this case,218

the TT rounding algorithm consists of two steps. First, the second core𝐺𝐺𝐺2 is orthogonalized using219

𝑅𝑄 decomposition1. Thereafter, singular value decomposition (SVD) truncation at tolerance 𝜀𝑇𝑇220

is applied to the product 𝐺𝐺𝐺1𝑅𝑅𝑅 to arrive at a new decomposition Y𝑇𝑇 . In this study, we denote221

TT rounding by Y𝑇𝑇 = round(X𝑇𝑇 , 𝜀𝑇𝑇 ). The computational cost of TT rounding is nontrivial,222

especially for TTs with large TT-ranks. As such, we choose carefully when to apply TT rounding,223

as described in Section 4d.224

c. TT Cross Interpolation225

It should be noted that not all operations can be directly computed in the TT format. Relevant226

examples discussed in Section 4 include
√
X𝑇𝑇 , |X𝑇𝑇 |, and 1/X𝑇𝑇 . However, nonlinear quantities227

such as these can be efficiently approximated via so-called TT cross interpolation. TT cross228

interpolation is a technique used to construct a TT representation of a tensor without needing to form229

the entire tensor explicitly. This method is particularly valuable when dealing with very large tensors230

or in situations where calculations are impractical due to limitations in TT arithmetic. Stemming231

1𝑅𝑄 decomposition is analogous to 𝑄𝑅 decomposition, except that the rows of the input matrix are orthogonalized, rather than the columns.
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from the skeleton (or CUR) decomposition (Mahoney and Drineas 2009), in combination with232

the Maximum Volume Principle (Goreinov et al. 2010), heuristic cross interpolation algorithms233

for tensor train, such as Alternating Minimal Energy (AMEn) (Dolgov and Savostyanov 2014),234

or Density Matrix Renormalization Group (DMRG) (Savostyanov and Oseledets 2011) have been235

developed. In this work, we use an implementation of AMEn algorithm, amen_cross, which is236

available in MATLAB TT-Toolbox (Oseledets 2014).237

4. Tensorization of the Finite Volume Scheme238

In this section, we will discuss the tensorization of the finite volume method for the shallow239

water equations.240

a. Tensor Train Finite Volume (TT-FV) Methods for Hyperbolic Conservation Laws241

We follow the methods discussed in (Danis et al. 2025). Start with the full-tensor form of the242

SWEs with “loop indices,”243

𝜕𝑈𝑈𝑈𝑖, 𝑗

𝜕𝑡
+
𝐹𝐹𝐹𝑖+1/2, 𝑗 −𝐹𝐹𝐹𝑖−1/2, 𝑗

Δ𝑥
+
𝐺𝐺𝐺𝑖, 𝑗+1/2−𝐺𝐺𝐺𝑖, 𝑗−1/2

Δ𝑦
= �̃�𝑆𝑆𝑖, 𝑗 . (16)

On a structured Cartesian mesh, we can introduce the shift operators in 𝑥 and 𝑦, and rewrite the244

flux terms as245

𝐹𝐹𝐹𝑖+ 1
2 , 𝑗

= 𝑇𝑥
𝑖, 𝑗𝐹𝐹𝐹𝑖− 1

2 , 𝑗
,

𝐺𝐺𝐺𝑖, 𝑗+ 1
2
= 𝑇

𝑦

𝑖, 𝑗
𝐺𝐺𝐺𝑖, 𝑗− 1

2
.

(17)

Substituting Equation (17) into Equation (16) and dropping the loop indices, we obtain the vector-246

ized form of the SWEs, which we will refer to as the “full-tensor” form:247

𝜕𝑈𝑈𝑈

𝜕𝑡
+ 1
Δ𝑥

(
𝑇𝑥 −1

)
𝐹𝐹𝐹 + 1

Δ𝑦

(
𝑇 𝑦 −1

)
𝐺𝐺𝐺 = �̃�𝑆𝑆 . (18)

Note that terms in Equation (18) correspond to 2-dimensional pre-stored arrays. Generally speak-248

ing, the full-tensor approach is slower than using the loop indices unless explicitly parallelized249

or vectorized. However, the full-tensor format naturally lends itself to compression of the total250

degrees of freedom through the TT format. Specifically, we can simply replace the full-tensor251
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terms with their TT counterparts:252

𝜕𝑈𝑈𝑈𝑇𝑇

𝜕𝑡
+ 1
Δ𝑥

(
𝑇𝑥 −1

)
𝐹𝐹𝐹𝑇𝑇 +

1
Δ𝑦

(
𝑇 𝑦 −1

)
𝐺𝐺𝐺𝑇𝑇 = �̃�𝑆𝑆𝑇𝑇 . (19)

In Equation (19), all the terms are now in the TT format. This includes the conserved variables,253

the numerical fluxes, as well the shift operators. The arithmetic operations such as the MPO254

multiplication (𝑇𝑥 −1)𝐹𝐹𝐹𝑇𝑇 and addition are all carried out in the TT format as discussed in255

Section 3. To simplify notation, we continue to write the shift operators, now MPOs in the TT256

format, as 𝑇𝑥 and 𝑇 𝑦.257

To perform the TT evolution of the SWEs, the tensor train terms of Equation (19) as well as258

the weights of the chosen finite volume method must be computed in an efficient manner. The259

numerical fluxes 𝐹𝐹𝐹𝑇𝑇 and 𝐺𝐺𝐺𝑇𝑇 as well as the (WENO) finite volume weights require careful260

consideration; these terms involve nonlinear operations on these TTs. We discuss this in the next261

subsections.262

b. Computing the Fluxes in the Tensor-Train Format263

To continue the formulation of our TT finite volume methods, we need to specify how the264

numerical fluxes are efficiently calculated in the TT format.265

In this study, we implement the TT format of the Local Lax-Friedrichs flux similar to that266

suggested by (Danis and Alexandrov 2023). For example, the fluxes in the 𝑥-direction will be267

computed in the TT format as268

𝐹𝐹𝐹𝑇𝑇

(
𝑈𝑈𝑈−𝑇𝑇 ,𝑈𝑈𝑈

+
𝑇𝑇

)
=

1
2

(
𝐹𝐹𝐹 (𝑈𝑈𝑈−𝑇𝑇 ) +𝐹𝐹𝐹 (𝑈𝑈𝑈+𝑇𝑇 )

)
− 𝜆𝐹,𝑇𝑇

2
(
𝑈𝑈𝑈+𝑇𝑇 −𝑈𝑈𝑈−𝑇𝑇

)
. (20)

However, the linear and nonlinear SWEs differ in the computation of each individual term in Equa-269

tion (20). For the linear SWEs the physical flux terms, 𝐹𝐹𝐹 (𝑈𝑈𝑈±
𝑇𝑇
) can be directly computed, without270

relying on special considerations such as TT cross interpolation. Additionally, the eigenvalue271

𝜆𝐹,𝑇𝑇 =
√
𝑔𝐻 is a constant for the linear equations. In contrast, for the nonlinear SWE equations272

1/ℎ𝑇𝑇 must be computed for the physical fluxes 𝐹𝐹𝐹 and𝐺𝐺𝐺 (in order to recover 𝑢 from the conserved273

quantity ℎ𝑢), and 𝜆𝐹,𝑇𝑇 = |𝑢𝑇𝑇 | +
√︁
𝑔ℎ𝑇𝑇 and 𝜆𝐺,𝑇𝑇 = |𝑣𝑇𝑇 | +

√︁
𝑔ℎ𝑇𝑇 must be computed as the eigen-274

values of the flux Jacobians of 𝐹𝐹𝐹 and 𝐺𝐺𝐺 respectively. These nonlinear functions of the TTs cannot275
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be computed directly, therefore we employ the AMEn method to compute eigenvalues 𝜆𝐹,𝑇𝑇 and276

𝜆𝐺,𝑇𝑇 and the Taylor series approximation given in Algorithm 1, to compute the reciprocal of the277

tensor train ℎ𝑇𝑇 .

Algorithm 1: Taylor Series Approximation to Tensor Train Reciprocal
Data: 𝑥𝑇𝑇 , 𝜀𝑇𝑇 > 0
Result: 𝑦𝑇𝑇 = 1/𝑥𝑇𝑇

1 𝑦𝑇𝑇 ← 1;
2 Δ𝑦𝑇𝑇 ← 1;
3 𝐸𝑟𝑟← 1;
4 𝑁← numel(𝑥𝑇𝑇 );
5 𝑥𝑎𝑣𝑔← sum(𝑥𝑇𝑇 )/𝑁;
6 𝑥𝑇𝑇 ← round(1− 𝑥𝑇𝑇/𝑥𝑎𝑣𝑔, 𝜀𝑇𝑇 );
7 while 𝐸𝑟𝑟 > 𝜀𝑇𝑇 do
8 Δ𝑦𝑇𝑇 ← round(Δ𝑦𝑇𝑇 ∗ 𝑥𝑇𝑇 , 𝜀𝑇𝑇 );
9 𝑦𝑇𝑇 ← round(𝑦𝑇𝑇 +Δ𝑦𝑇𝑇 , 𝜀𝑇𝑇 );

10 𝐸𝑟𝑟← ∥Δ𝑦𝑇𝑇 ∥𝐹/
√
𝑁;

11 𝑦𝑇𝑇 ← 𝑦𝑇𝑇/𝑥𝑎𝑣𝑔;

278

After obtaining 1/ℎ𝑇𝑇 , the components of the flux vectors in Equation (3) can be directly279

computed. Note that we could have also employed a TT cross interpolation method to compute280

1/ℎ𝑇𝑇 instead of Algorithm 1. In the numerical examples considered in this study, however, we281

found that Taylor series approximation to 1/ℎ𝑇𝑇 is as fast as the AMEn method. This is possibly282

because the shallow water layer thickness ℎ can be decomposed as a superposition of a large mean283

value and small amplitude oscillations, i.e. ℎ = 𝐻 +𝜂(𝑥, 𝑦, 𝑡) where |𝜂 | ≪ 𝐻, which leads to a very284

fast and robust convergence of the Taylor series approximation for 1/ℎ𝑇𝑇 .285

Note also that this method is different than the LF-cross method developed in (Danis et al. 2025),286

where the complete flux vector of the compressible Euler equations is computed with a single cross287

interpolation using the AMEn method. In the context of the finite difference method for solving288

compressible flow equations, the LF-cross method was reported to be faster than a similar method289

presented here that approximates 1/𝜌𝑇𝑇 (reciprocal of density) with the TT cross interpolation to290

compute the flux vector components of compressible Euler equations directly. This was thought291

to be due to slow TT-rounding while each flux vector component was estimated. However, for the292

finite volume method for solving the shallow water equations, we found that the LF-cross approach293

is considerably slower than the present approach. This might be due to two reasons. First, the294

compressible Euler equations have more conserved variables than the SWEs, and therefore, more295
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floating point operations are needed to compute fluxes in compressible flow, meaning that the296

rounding routine will be called more often and each call will more expensive due to the additional297

cost of quadrature rules used in high-order finite volume schemes. Second, computing 1/ℎ𝑇𝑇 for298

the SWEs is likely a much simpler task than computing the 1/𝜌𝑇𝑇 for the compressible flow. As299

mentioned above, in the case of the SWEs, ℎ is simply a superposition of a mean depth and small-300

amplitude waves, but in the compressible flow, the density field 𝜌 can have large variations, and301

even, discontinuities such as strong shock waves. Therefore, the nonlinear flux calculations should302

be designed or selected according to the particular application, especially when the computation303

of the reciprocal of a tensor train is required. Looking forward to extending these methods to304

layered Boussinesq models appropriate for ocean and atmosphere circulation at the climate scale,305

we expect that the method of computing 1/ℎ𝑇𝑇 presented here in Algorithm 1 will extend naturally;306

the barotropic mode of a layered Boussinesq model is exactly the SWEs. The baroclinic mode is307

given by a vertical stack of shallow water models that communicate via vertical fluxes; it is likely308

that these will be well treated by the approach from Algorithm 1 as well.309

c. High-order Reconstructions in the Tensor-Train Format310

Finally, to complete our TT finite volume methods, we specify how the high-order reconstructions311

are handled in the TT format. Here, we consider two types of high-order variable reconstruction312

methods – linear (Upwind3 and Upwind5) and nonlinear (WENO5) reconstructions as discussed in313

Section 2c and Appendix A1. For linear reconstruction schemes, we are able to directly manipulate314

the TT cores, which is more computationally efficient than manipulating the entire TT. However, for315

nonlinear WENO reconstruction, this is not possible because of the presence of inverse quadratic316

terms in in the WENO weights. Therefore, we employ TT cross interpolation via the AMEn317

method for the WENO reconstruction.318

1 Linear Reconstruction Methods319

The linear reconstruction in the TT format in a given direction is applied only to the TT core320

corresponding to that direction, which significantly reduces the computational costs. To exploit321

this, we modify the algorithm presented in Appendix A1. At a high level, the algorithm consists322

of two steps: Step 1 is “De-cell” averaging over 𝑥 followed by Step 2, “De-cell” averaging over 𝑦.323

16



Note that, in the full-tensor format, Step 1 is followed by Step 2 for each time a reconstruction is324

needed along a cell interface. This means that, in a 2-dimensional setting, Step 2 is applied twice325

to close the cell boundaries. However, this is not needed in the TT format.326

To illustrate the idea, we adopt the notation used in (Oseledets 2011b) and denote the elementwise327

values of a cell-averaged tensor �̃� as328

�̃�(𝑖, 𝑗) = 𝑢1(𝑖)�̃�2( 𝑗) , (21)

Note that the first core 𝑢1 is written with a bar to denote the cell-averaging operator in 𝑥 and the329

second core �̃�2 is written with a tilde to denote the cell-averaging operator in 𝑦. This implies that330

Step 2 in Appendix A1 can be applied to each core independently and even simultaneously.331

TT-Reconstruction Step 1 starts with reconstructing the cores at the quadrature points 𝑢1(𝑥𝑖 +332

𝛿𝑚Δ𝑥) and 𝑢2(𝑦 𝑗 + 𝛿𝑚Δ𝑦). This step is almost identical to Step 2 in Appendix A1 except for that333

fact that the reconstruction is only applied to TT cores rather than to the full-tensor.334

TT-Reconstruction Step 2 is similar to Step 1 in Appendix A1, and again, we only apply re-335

construction to the TT-cores. For example, a reconstruction in the 𝑥-direction first compute336

𝑢1(𝑖±1/2)∓, and then, the result is combined with 𝑢2(𝑦 𝑗 + 𝛿𝑚Δ𝑦) prepared in TT-Reconstruction337

Step 1:338

𝑢(𝑖±1/2, 𝑦 𝑗 + 𝛿𝑚Δ𝑦)∓ = 𝑢1(𝑖±1/2)∓𝑢2(𝑦 𝑗 + 𝛿𝑚Δ𝑦) . (22)

Similarly, for the reconstruction in the 𝑦-direction, TT-Reconstruction Step 2 computes 𝑢2( 𝑗±1/2)∓339

and combines this with 𝑢1(𝑥𝑖 + 𝛿𝑚Δ𝑥) prepared in TT-Reconstruction Step 1:340

𝑢(𝑥𝑖 + 𝛿𝑚Δ𝑥, 𝑗 ±1/2)∓ = 𝑢1(𝑥𝑖 + 𝛿𝑚Δ𝑥)𝑢2( 𝑗 ±1/2)∓ . (23)

2 Nonlinear Reconstruction Method341

The WENO scheme performs the nonlinear reconstruction using the TT cross interpolation by342

applying Step 1 and Step 2 of Appendix A1 in the same order. In fact, TT-WENO Step 1 is343

similar to the finite difference WENO-cross method proposed in (Danis et al. 2025), i.e. Step344

1 is applied in an equation-by-equation fashion using the TT cross interpolation as detailed in345

Algorithm 2. Here, funWENO is a function that takes as input the 𝑥-direction 5-stencil 𝑆𝑆𝑆 =346
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{(𝑇𝑥)−2�̃�, (𝑇𝑥)−1�̃�, �̃�, 𝑇𝑥 �̃�, (𝑇𝑥)2�̃�} of a conserved, cell-averaged quantity �̃�, and returns the cell-347

averaged values �̃�± in the 𝑦-direction. In plain language, funWENO applies Step 1 of Appendix A1348

for WENO5 to the full-tensor problem. The AMEn method is then able to approximate the349

application of this function to the TT quantity �̃�𝑇𝑇 without ever forming the full tensor.

Algorithm 2: TT-WENO Step 1 for the “de-cell” averaging over 𝑥
Data: A component of the cell-averaged conserved variable vector �̃�𝑇𝑇 , function

funWENO, and the convergence criterion 𝜀𝑇𝑇 .
Result: Cell-averaged �̃�±

𝑇𝑇
in 𝑦-direction at the interface locations.

1 Collect the 5-cell stencil of �̃�𝑇𝑇 in the 𝑥-direction into the array
𝑆𝑆𝑆 = {(𝑇𝑥)−2�̃�𝑇𝑇 , (𝑇𝑥)−1�̃�𝑇𝑇 , �̃�𝑇𝑇 , 𝑇

𝑥 �̃�𝑇𝑇 , (𝑇𝑥)2�̃�𝑇𝑇 }.
2 Set the initial guess 𝑣0 = �̃�𝑇𝑇 .
3 Perform cross interpolation for + side: �̃�+

𝑇𝑇
=AMEn(funWENO, 𝑆𝑆𝑆, 𝑣0, 𝜀𝑇𝑇 ,+1)

4 Perform cross interpolation for − side: �̃�−
𝑇𝑇

=AMEn(funWENO, 𝑆𝑆𝑆, 𝑣0, 𝜀𝑇𝑇 ,−1)

350

Similarly, TT-WENO Step 2 applies Step 2 of Appendix A1 for each conserved variable using351

the TT cross interpolation, see Algorithm 3. However, it performs the WENO reconstruction at all352

quadrature points with a single cross interpolation. Similar to the above, funWENOquad applies353

Step 2 of Appendix A1 for WENO5 to �̃�±.354

Note that the AMEn-cross routine in the MATLAB Toolbox returns a TT of shape 1×𝑁𝑥×𝑁𝑦×𝑁𝑞,355

where 𝑁𝑥 is the number of grid points in the 𝑥-direction, 𝑁𝑦 is the number of grid points in the356

𝑦-directions, and 𝑁𝑞 is the number of quadrature points. Therefore, as a last step, it is reshaped and357

permuted to obtain a new TT of shape 1×𝑁𝑥 ×𝑁𝑦𝑁𝑞 ×1 for the reconstruction in the 𝑥-direction358

and 1×𝑁𝑥𝑁𝑞 ×𝑁𝑦 ×1 for the reconstruction in the 𝑦-direction.

Algorithm 3: TT-WENO Step 2 for for the “de-cell” averaging in 𝑦

Data: Cell-averaged �̃�±
𝑇𝑇

in 𝑦-direction obtained from TT-WENO Step 1, function
funWENOquad, and the convergence criterion 𝜀𝑇𝑇 .

Result: 𝑣±
𝑇𝑇

at the interface locations.
1 Collect the 5-cell stencil of 𝑣𝑇𝑇 in the 𝑥-direction into the arrays

𝑆𝑆𝑆± = {(𝑇 𝑦)−2�̃�±
𝑇𝑇
, (𝑇 𝑦)−1�̃�±

𝑇𝑇
, �̃�±

𝑇𝑇
, 𝑇𝑦 �̃�

±
𝑇𝑇
, (𝑇 𝑦)2�̃�±

𝑇𝑇
}.

2 Set the initial guesses as 𝑣±0 = �̃�±
𝑇𝑇

.
3 Perform cross interpolation for + side: 𝑣+

𝑇𝑇
=AMEn(funWENOquad, 𝑆𝑆𝑆+, 𝑣+0 , 𝜀𝑇𝑇 ,+1)

4 Perform cross interpolation for − side: 𝑣−
𝑇𝑇

=AMEn(funWENOquad, 𝑆𝑆𝑆−, 𝑣−0 , 𝜀𝑇𝑇 ,−1)
5 Reshape and permute 𝑣±

𝑇𝑇
to return two TTs of size 1×𝑁𝑥 ×𝑁𝑦𝑁𝑞 ×1.

359
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d. Choosing a Suitable 𝜀𝑇𝑇360

The choice of 𝜀𝑇𝑇 determines the overall accuracy and the speed of the TT solver, as demonstrated361

in (Danis et al. 2025). In this study, we modify the 𝜀𝑇𝑇 formula slightly to accommodate both the362

3rd and 5th order schemes as363

𝜀𝑇𝑇 = 𝐶𝜀

𝑉1/2Δ𝑥𝑝−1/2

max𝑞∈𝑈𝑈𝑈𝑇𝑇
∥𝑞∥𝐹

, (24)

where ∥ · ∥𝐹 is the Frobenius norm, 𝑝 denotes the order of accuracy of the TT-FV scheme, 𝑉 is the364

volume of the computational domain, and 𝐶𝜀 is a problem dependent variable (see (Danis et al.365

2025)).366

Ideally, the choice of 𝐶𝜀 should be made to ensure that the TT truncation errors are less than367

or equal to the discretization errors of the underlying numerical scheme such that the formal368

convergence rate is maintained in the TT format. However, this requires an apriori knowledge of369

the discretization error, which is generally not available. If a very large𝐶𝜀 is set, then the numerical370

TT solution will attain a relatively low-rank structure but the formal accuracy of the underlying371

scheme will be lost. On the other hand, a very small 𝐶𝜀 will maintain the accuracy, but the TT372

ranks will be unnecessarily large. In the present study, thanks to the nondimensionalization of373

the SWEs, 𝐶𝜀 = 1 is found to be sufficient for obtaining high-order results without increasing the374

TT ranks in the majority of the numerical examples. Despite this success, however, choosing a375

suitable value for 𝐶𝜀 still remains as an empirical process. To determine 𝐶𝜀, we recommend a376

procedure analogous to a grid independence study – a common practice applied in Computational377

Fluid Dynamics (CFD) for identifying the finest grid resolution at which further refinement does378

not significantly alter the numerical solution. To ensure 𝐶𝜀-independence, one could start with379

a relatively large value of 𝐶𝜀 and incrementally decrease it until the numerical solution becomes380

independent of 𝐶𝜀.381

Note that if one of the conserved variables is exactly zero, choosing 𝜀𝑇𝑇 according to Equation (24)382

may still result in rank growth. This is primarily because 𝜀𝑇𝑇 becomes comparable to the numerical383

noise generated for that conserved variable, which is known to result in rank growth. A robust384

workaround is obtained by replacing the max operator in the denominator of Equation (24) with385

the norm of the relevant conserved variable itself. For example, consider the conserved variable386
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𝑢𝑇𝑇 ∈𝑈𝑈𝑈𝑇𝑇 of the linear SWEs Equation (2), for which we calculate387

𝜀𝑢𝑇𝑇 = min

(
10−3,𝐶𝜀

𝑉1/2Δ𝑥𝑝−1/2

∥𝑢∥𝐹

)
, (25)

at the beginning of a time step. Note that the new dynamic formula is clipped at 10−3 to avoid388

accuracy loss if ∥𝑢∥𝐹→ 0, where the upper bound 10−3 is empirically deemed sufficient to limit the389

TT truncation error such that the relative error ∥𝑢−𝑢∗∥𝐹/∥𝑢∥𝐹 ≤ 10−3 is achieved after performing390

𝑢 = round(𝑢∗, 𝜀𝑇𝑇 ).391

Equipped with Equation (25), the 3rd order strong stability-preserving Runge-Kutta method (Shu392

and Osher 1988; Gottlieb et al. 2001) for a given semi-discrete form of 𝑢𝑇𝑇 ,393

𝑑𝑢𝑇𝑇

𝑑𝑡
= 𝐿 (𝑢𝑇𝑇 ) , (26)

is then defined in TT format as394

𝑢
(1)
𝑇𝑇

= F (𝑢𝑛𝑇𝑇 ) ,

𝑢
(2)
𝑇𝑇

= round
(
3
4
𝑢𝑛𝑇𝑇 +

1
4
F (𝑢(1)

𝑇𝑇
), 𝜀𝑢𝑇𝑇

)
,

𝑢𝑛+1𝑇𝑇 = round
(
1
3
𝑢𝑛𝑇𝑇 +

2
3
F (𝑢(2)

𝑇𝑇
), 𝜀𝑢𝑇𝑇

)
,

(27)

where F (𝑢) is the forward Euler step395

F (𝑢) = round
(
𝑢 +Δ𝑡𝐿 (𝑢), 𝜀𝑢𝑇𝑇

)
. (28)

Note that the same procedure is applied for the time integration of other conserved variables. For396

all other rounding operations, we use the standard formula given in Equation (24).397

5. Numerical Results398

In this section, we demonstrate the performance of the TT finite volume solver in a series of five399

numerical test cases. The first four of these cases are taken from the validation suite introduced400

in (Bishnu et al. 2024); the Coastal Kelvin Wave, Inertia-Gravity Wave, Barotropic Tide, and401

Manufactured Solution cases are all solved on a square computational domain Ω = [0, 𝐿] × [0, 𝐿].402
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For these cases, unless otherwise stated, we set 𝑔 = 10 m/s2, 𝑓 = 10−4 1/s, 𝐻 = 1000 m, 𝑐 =
√
𝑔𝐻 =403

100 m/s, and 𝑅 = 𝑐/ 𝑓 = 106 m as in (Bishnu et al. 2024). For the fifth and final test case, we present404

a flow characterized by a stable barotropic jet, similar to that from (Galewsky et al. 2004), adapted405

to the plane; we describe the relevant details in Section 5e.406

In all cases, the nondimensional forms of Equations (1) to (3) are solved (see Appendix A1)407

using the 3rd order strong stability-preserving Runge-Kutta method (Shu and Osher 1988; Gottlieb408

et al. 2001). For the 5th order reconstruction schemes, we set the time step Δ𝑡 proportional to409

Δ𝑥5/3 to maintain accuracy, and the proportionality constant is chosen such that the numerical410

solution remains stable for all time steps. Note that all time step sizes will be reported in terms of411

the nondimensional variables. In all TT simulations, Equations (24) and (25) are calculated using412

only the nondimensional variables and the 𝐿2−error is defined relative to the 𝐿2−error of the same413

reconstruction method at the coarsest grid level. Both tensor-train and full-tensor simulations are414

performed on Apple M1 Max chip using MATLAB by ensuring a single-thread execution. To415

optimize the efficiency in MATLAB and avoid performance losses due to for-loops, the full-tensor416

solver is implemented as suggested in (Danis et al. 2025) to make use of MATLAB’s vectorization.417

Finally, all surface integrals are computed using Gauss-Legendre quadrature rule in the TT format,418

as suggested in (Alexandrov et al. 2023). See Table 1 for a summary of the numerical examples419

along with nondimensional time step to grid size ratios and 𝐶𝜀 in Equation (25).420

Test Case Upwind3 Upwind5 WENO5
Δ𝑡/Δ𝑥 𝐶𝜀 Δ𝑡/Δ𝑥5/3 𝐶𝜀 Δ𝑡/Δ𝑥5/3 𝐶𝜀

Coastal Kelvin Wave 5×10−5 1 2.5×10−4 1 2.5×10−4 1000
Inertia-Gravity Wave 10−4 1 10−3 1 10−3 500
Barotropic Tide 2.5×10−4 1 5×10−4 1 5×10−4 1
Manufactured Solution 5×10−5 10−4 5×10−3 1 5×10−3 1
Stable Barotropic Jet 5×10−3 1 5×10−1 1 5×10−1 1

Table 1: Summary of test cases.

Finally, we should be careful to consider and discuss the differences between the results presented421

here for the SWEs and the results from (Danis et al. 2025) for the compressible Euler equations.422

First, the SWE configurations considered here are chosen specifically to show the performance423
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of our TT-FV methods as applied to problems relevant to large scale geophysical flows, whereas424

the experiments presented in (Danis et al. 2025) show that similar TT-FV methods can accurately425

resolve shocks and flow structures arising from turbulent motions, which are not present in hydro-426

static models of the ocean and atmosphere. Additionally, as previously discussed in Section 4b,427

the method used to compute the flux in the present case was chosen as it is more computationally428

efficient for the SWE configurations considered here. Finally, one can note that, in the best cases,429

the speedups reported in (Danis et al. 2025) are an order of magnitude larger than the speedups430

reported here. In part, this could be because of how effectively the model state is able to be431

compressed by TT across different types of flows, but it is very likely that the biggest contribution432

to this difference in performance is the larger number of unknowns in the compressible Euler433

problems. The compressible Euler equations have five unknown quantities in a 3-dimensional434

domain, while the SWEs have only three unknowns in a 2-dimensional domain. It is well known435

that the effectiveness of TT compression increases with problem size, so it is natural that the larger436

problem sizes from (Danis et al. 2025) would lead to more speedup. This is good news for the437

present case, because as future work extends these TT-FV methods to more realistic configurations438

in layered, 3-dimensional models, we expect the speedups presented here not just to generalize,439

but to improve.440

a. Coastal Kelvin Wave441

In this example, we solve the linear SWEs, Equations (1) and (2), up to the final time 𝑇 = 3 hours442

and set 𝐿 = 5× 106 m. Coastal Kelvin Waves occur when the Coriolis force is balanced against443

a topographic boundary, and are found in real-world observations (Johnson and O’Brien 1990).444

In this idealized configuration, the coastline is in the non-periodic 𝑥 direction and nondispersive445

waves travel along the boundary in the periodic 𝑦 direction. The exact solution is plotted in Figure 3446

and the initial conditions are composed of two wave modes:447

𝜂 = −𝐻
{
𝜂(1) sin

(
𝑘
(1)
𝑦 (𝑦 + 𝑐𝑡)

)
+𝜂(2) sin

(
𝑘
(1)
𝑦 (𝑦 + 𝑐𝑡)

)}
exp

(
−𝑥/𝑅

)
,

𝑢 = 0,

𝑣 =
√︁
𝑔𝐻

{
𝜂(1) sin

(
𝑘
(1)
𝑦 (𝑦 + 𝑐𝑡)

)
+𝜂(2) sin

(
𝑘
(1)
𝑦 (𝑦 + 𝑐𝑡)

)}
exp

(
−𝑥/𝑅

)
,

(29)
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where 𝜂(1) = 𝜂(2)/2 = 10−4 m, and 𝑘
(1)
𝑦 = 𝑘

(2)
𝑦 /2 = 2𝜋/𝐿.

(a) Contour plot of 𝜂 produced by the TT method
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(b) 𝜂 profile

Fig. 3: Exact and TT solutions of surface elevation for Coastal Kelvin Wave at 𝑇 = 3 hours. The
TT solution is obtained with Upwind5 on 1280×1280 grid.

448

We use the exact solution to set the boundary condition in the 𝑥−direction, but in the 𝑦−direction,449

we consider a periodic boundary. Furthermore, for both upwind methods we use 𝐶𝜀 = 1 in450

Equations (24) and (25) to calculate 𝜀𝑇𝑇 , but for WENO5 we use 𝐶𝜀 = 1000. To guarantee451

accuracy and stability of the numerical solution, we also consider a time step of Δ𝑡/Δ𝑥 = 5×10−5
452

for the Upwind3 method and Δ𝑡/Δ𝑥5/3 = 2.5×10−4 for the 5th order methods.453

Figure 4 shows the performance of Upwind3, Upwind5 and WENO5 methods. On the left,454

all TT reconstruction methods are observed to maintain their formal 𝐿2−convergence order for455

𝜂. On the right, the various methods are compared in terms of the acceleration with respect to456

their corresponding standard full-tensor versions: At the finest grid level, TT-Upwind5 achieves457

83x acceleration while Upwind3 has a speed-up of 73x. Note that Upwind3 is still less expensive458

than Upwind5. Therefore, the higher speed-up value of Upwind5 simply means that it becomes459

more efficient in accelerating its full-tensor version for this linear problem. On the other hand, the460

TT-WENO5 method only achieves the significantly lower speed-up of 14x. This clearly shows the461

cost of the TT cross interpolation used in the WENO5 scheme, even when the problem is linear462

and smooth.463
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Fig. 4: 𝐿2 error of surface elevation and speed-up for Coastal Kelvin Wave at 𝑇 = 3 hours.

b. Inertia-Gravity Wave464

Inertia-gravity waves are an important component of geophysical turbulence (Young 2021). They465

occur in the open ocean, and are gravity waves where particles oscillate in an ellipse due to the466

rotation of the Earth. The idealized test problem is linear with a flat bottom, like the Coastal467

Kelvin Wave, but the domain is periodic in both directions. Specifically, we solve the linear SWEs,468

Equations (1) and (2), up to the final time 𝑇 = 3 hours with 𝐿 = 107 m. We consider the general469

solution,470

𝜂 = 𝜂 cos
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)
,

𝑢 =
𝑔𝜂

�̂�2− 𝑓 2

{
�̂�𝑘𝑥 cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)
− 𝑓 𝑘𝑦 sin

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)}
,

𝑣 =
𝑔𝜂

�̂�2− 𝑓 2

{
�̂�𝑘𝑦 cos

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)
+ 𝑓 𝑘𝑥 sin

(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)}
,

(30)

where �̂� =

√︂
𝑐2

(
𝑘2
𝑥 + 𝑘2

𝑦

)
+ 𝑓 2. The particular solution plotted in Figure 5 is constructed to be471

the superposition of two wave modes for 𝜂(1) = 𝜂(2)/2 = 10−1 m, 𝑘 (1)𝑥 = 𝑘
(2)
𝑥 /2 = 2𝜋/𝐿, and 𝑘

(1)
𝑦 =472

𝑘
(2)
𝑦 /2 = 2𝜋/𝐿 and initial conditions are set from these at 𝑡 = 0.473
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(a) Contour plot of 𝜂 produced by the TT method
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Fig. 5: Exact and TT solutions of surface elevation for Inertia-Gravity Wave at 𝑇 = 3 hours. The
TT solution is obtained with Upwind5 on 1280×1280 grid.

As in the previous example, Equations (24) and (25) uses 𝐶𝜀 = 1 for both upwind methods, but it474

sets𝐶𝜀 = 500 for the WENO5 scheme in this example. Time step sizes are also set as Δ𝑡/Δ𝑥 = 10−4
475

for the Upwind3 method and Δ𝑡/Δ𝑥5/3 = 10−3 for the 5th order methods.476

In Figure 6, the 𝐿2−convergence of 𝜂 and speed-up of the TT solver are shown. Our TT solver477

recovers the formal order of accuracy as in the previous example. Similar to the previous test478

case, TT-Upwind5 results in a slightly better speed-up than TT-Upwind3, and TT-WENO5 gives479

considerably less acceleration. At the finest grid level, the speed-up achieved by the TT solver are480

79x for Upwind5, 64x for Upwind3, and 12x for WENO5.481

c. Barotropic Tide482

The Barotropic Tide case is an idealized representation of a coastal tide on a continental shelf483

(Clarke and Battisti 1981). Like the previous cases it tests the linear SWEs, Equations (1) and (2),484

but now on a doubly non-periodic domain. We solve to a final time of 𝑇 = 30 minutes, where485
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Fig. 6: 𝐿2 error of surface elevation and speed-up for Inertia-Gravity Wave at 𝑇 = 3 hours.

𝐿 = 25×104 m. The general solution considered here is given as,486

𝜂 = 𝜂 cos (𝑘𝑥) cos (𝜔𝑡) ,

𝑢 =
𝑔𝜂𝜔𝑘

�̂�2− 𝑓 2 sin(𝑘𝑥) sin (𝜔𝑡) ,

𝑣 =
𝑔𝜂 𝑓 𝑘

�̂�2− 𝑓 2 sin(𝑘𝑥) cos (𝜔𝑡) ,

(31)

where 𝜔 =
√︁
𝑔𝐻𝑘2 + 𝑓 2. We again consider a particular solution shown in Figure 7 constructed487

as a superposition of two wave modes, but now we set 𝜂(1) = 𝜂(2)/2 = 0.2 m, 𝑘 (1) = 2𝜋/𝜆(1)488

and 𝑘 (2) = 2𝜋/𝜆(2) , where 𝜆(1) = 4𝐿/5 and 𝜆(2) = 4𝐿/9. Note that 𝐻 = 200 𝑚 in this example.489

Physically, the wavelengths are chosen to satisfy the conditions for tidal resonance in this domain490

(Bishnu et al. 2024). The initial conditions at 𝑡 = 0 are set from the exact solution while the491

boundary condition in the 𝑥-direction is taken from the exact solution and is assumed periodic in492

the 𝑦-direction.493

In this test case, we set 𝐶𝜀 = 1 for all reconstruction schemes, and consider Δ𝑡/Δ𝑥 = 2.5×10−4
494

for Upwind3 and Δ𝑡/Δ𝑥5/3 = 5×10−4 for the 5th order methods.495

The results reported in Figure 8 follow the trends already observed in the previous linear test496

cases: Our TT solver achieves the formal order of accuracy, the highest speed-up is obtained for497
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(a) Contour plot of 𝜂 produced by the TT method
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Fig. 7: Exact and TT solutions of surface elevation for Barotropic Tide at 𝑇 = 30 minutes. The TT
solution is obtained with Upwind5 on 1280×1280 grid.

Upwind5 and the WENO5 gives the lowest. At the finest grid level, the speed-up achieved by the498

TT solver are 124x for Upwind5, 89x for Upwind3, and 19x for WENO5.499
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Fig. 8: 𝐿2 error of surface elevation and speed-up for Barotropic Tide at 𝑇 = 30 minutes.
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d. Manufactured Solution500

In this test case, we turn our attention to the nonlinear SWEs and solve Equations (1) and (3)501

up to the final time 𝑇 = 3 hours, where we set 𝐿 = 107 m. The manufactured solution does not502

have an analog observed in nature, but is important because an analytic solution may be derived503

that tests all terms in the SWEs. Subsequent SWE test cases for geophysical turbulence with more504

complex behavior do not have analytic solutions (Williamson et al. 1992). Using the method of505

manufactured solutions (Roache 2019), we enforce506

𝜂 = 𝜂 sin
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)
,

𝑢 = �̂� cos
(
𝑘𝑥𝑥 + 𝑘𝑦𝑦− �̂�𝑡

)
,

𝑣 = 0 ,

(32)

where 𝜂 = 10−2 m , �̂� = 10−2 m/s, 𝑘𝑥 = 𝑘𝑦 = 2𝜋/𝐿, and �̂� =

√︂
𝑐2

(
𝑘2
𝑥 + 𝑘2

𝑦

)
, as depicted in Figure 9.507

We consider periodic boundaries and impose the initial condition from the manufactured solution508

at 𝑡 = 0. In this nonlinear test case, we set 𝐶𝜀 = 10−4 for the Upwind3 scheme to maintain its 3rd

(a) Contour plot of 𝜂 produced by the TT method
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Fig. 9: Exact and TT solutions of surface elevation for the Manufactured Solution at 𝑇 = 3 hours.
The TT solution is obtained with Upwind5 on 1280×1280 grid.

509

order accuracy. For the 5th order methods, however, 𝐶𝜀 = 1 is deemed to be sufficient. The time510
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stepping is performed according to Δ𝑡/Δ𝑥 = 5×10−5 for Upwind3 and Δ𝑡/Δ𝑥5/3 = 5×10−3 for the511

5th order methods.512

In Figure 10, we observed the formal 3rd order 𝐿2 convergence of Upwind3 and 5th order513

convergence of Upwind5 and WENO5, as in the linear cases. However, we see that Upwind3 gives514

a better acceleration than Upwind5 unlike the linear test cases. This may be due to the nonlinear515

nature of the fluxes in Equation (3). Recall that TT rounding operation is performed after almost516

each TT multiplication and addition operation to avoid the rank growth. Therefore, TT rounding517

is applied several times for the nonlinear fluxes while no rounding is needed for the linear fluxes.518

Since higher-order schemes require more quadrature points to compute fluxes, the additional cost519

of TT rounding is naturally more expensive for higher-order method for. In addition, the nonlinear520

fluxes need to compute 1/ℎ𝑇𝑇 using Algorithm 1, which is also needed to be carried out on larger521

arrays for higher-order schemes. As a result, the different mechanics of flux computation in linear522

and nonlinear problems lead to different trends in terms of the speed-up. At the finest grid level, the523

speed-up achieved by the TT solver are 71x for Upwind3, 57x for Upwind5, and 29x for WENO5.524
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Fig. 10: 𝐿2 errors of the shallow water layer thickness and speed-up for Manufactured Solution at
𝑇 = 3 hours.

29



e. Stable Barotropic Jet525

In this final test case, we simulate a flow similar to that from the stable barotropic jet test case from526

(Galewsky et al. 2004), adapted for the plane. We initialize the flow to a steady state characterized527

by a strong, balanced flow in the 𝑥-direction. We run our model for five simulated days to show528

that it correctly maintains this steady state. In addition to showing that our TT solver produces529

flows equivalent to those produced by standard methods, we also show that the TT solver conserves530

thickness and energy within the expected error range. The unstable barotropic jet test case from531

(Galewsky et al. 2004) will be included in future work, as the more complex dynamics will likely532

benefit from the further development of our TT methods.533

We solve the nonlinear SWEs (Equations (1) and (3)) with 𝑔 = 9.80616 m/s2, on the domain534

Ω = [0, 𝐿] ×
[
0, 𝐿2

]
, with 𝐿 = 2𝜋 × 6371220 m (the circumference of Earth). The computational535

domain is discretized by 𝑁𝑥 ×𝑁𝑦 grids, where 𝑁𝑥 = 5×2𝑛 for 𝑛 = 3,4, . . . ,9 and 𝑁𝑦 = 𝑁𝑥/2. The536

domain is periodic in 𝑥, with no-flow boundary conditions at 𝑦 = 0 and 𝑦 = 𝐿
2 . To aid readability537

and implementation, we define two functions 𝜃 : [0, 𝐿] → [0,2𝜋] and 𝜙 :
[
0, 𝐿2

]
→

[−𝜋
2 , 𝜋2

]
that538

map the 𝑥 and 𝑦 coordinates to domains normally associated with longitude and latitude,539

𝜃 (𝑥) = 2𝜋
𝐿
𝑥 ,

𝜙(𝑦) = 2𝜋
𝐿
𝑦− 𝜋

2
.

(33)

The fluid velocity is initialized to so that the vertical component is equal to zero, and the horizontal540

component depends only on 𝑦,541

𝑢(𝑦) =


0 𝜙(𝑦) ≤ 𝜙0

𝐶 exp
(

1
(𝜙(𝑦)−𝜙0) (𝜙(𝑦)−𝜙1)

)
𝜙0 < 𝜙(𝑦) < 𝜙1

0 𝜙(𝑦) ≥ 𝜙1

, (34)

where 𝜙0 =
−𝜋
7 and 𝜙1 =

𝜋
7 , 𝐶 = 𝑢max exp

(
4

(𝜙1−𝜙0)2

)
, and 𝑢max = 80 m/s. Then, a balanced initial542

condition for the thickness can be obtained by setting the time-derivative of the velocity to zero,543

inserting Equation (34) into the momentum equation, and solving for the thickness ℎ. This gives544
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us,545

ℎbalance(𝑦) = ℎ0−
1
𝑔

∫ 𝑦

0
𝑓 𝑢(𝑦′) d𝑦′ , (35)

where ℎ0 is a constant chosen so that the average value of the thickness is equal to 10,000 m. For546

simplicity, we choose a constant value for the Coriolis force 𝑓 = 2𝜔 sin
(
𝜋
4

)
, where𝜔 = 7.292×10−5

547

s−1 is the angular velocity of the Earth’s rotation.548

In Figure 11a, 𝐿2−errors are measured by comparing the solution at 𝑇 = 5 days to the exact549

solution taken from the initial conditions. All reconstruction schemes recover their respective550

formal convergence rate as the mesh is gradually refined. Unlike the previous cases, Upwind5551

attains error values almost an order of magnitude smaller than those obtained by WENO5. This552

result is a clear outcome of smaller numerical dissipation levels of Upwind5 compared to WENO5,553

resulting in smaller modifications of the stable initial condition during the course of the simulation.554

Figure 11b shows the speed-up values for all reconstruction schemes. The full-tensor simulations555

for the grid levels 𝑛 = 3,4, . . . ,7 were run up to the final time𝑇 = 5 days. At the grid levels 𝑛 = 8 and556

9, the full-tensor simulation duration was measured for 100 times steps, which is then extrapolated557

to estimate the total computational cost at 𝑇 = 5 days. Note that the tensor-train simulations were558

run up to the final time 𝑇 = 5 days at all grid levels. As in the previous examples, the cross559

interpolation procedure used for WENO5 results in lower levels acceleration. At the finest grid560

level, speed-up values are 64.5 for Upwind3, 55.7 for Upwind5 and 15.6 for WENO5.561

The global conservation properties of the proposed TT schemes are investigated in Figure 12.562

Total mass is calculated as ℎ(𝑡) =
∫
Ω
ℎ(𝑡) d𝐴 and total energy is calculated as 𝐸 (𝑡) =

∫
Ω

1
2 (𝑢(𝑡)

2 +563

𝑣(𝑡)2) d𝐴 at any given time 𝑡. Tensor-train errors are denoted by solid lines and full-tensor errors564

are denoted by symbols with the same color code for the same grid level. The vertical axis shows565

the difference between the total mass/energy at time 𝑇 = 0 versus the total mass/energy at time566

𝑇 = 𝑡, referred to as the total mass/energy error. Finally, this error is normalized by dividing by the567

total energy at time 𝑇 = 0. If these quantities were exactly conserved, the values on the vertical568

axis would be zero. This way of showing global conservation over time is similar to that used in569

(Calandrini et al. 2021).570

Figures 12a and 12c compare total mass errors of the tensor-train solver to those of the standard571

full-tensor solver for Upwind3 and Upwind5, respectively. Note that ℎ is a conserved variable572

solved in Equation (1). Therefore, the mismatch between the tensor-train and full-tensor error573
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Fig. 11: 𝐿2 errors of the shallow water layer thickness and speed-up for the Stable Barotropic Jet
case at 𝑇 = 5 days.

levels is a direct measure of applying TT rounding/truncation at the end of each Runge-Kutta stage,574

where additional numerical dissipation could be introduced. Despite this mismatch, however, the575

total mass errors for the TT solvers stabilizes over time and tend to converge asymptotically to a576

steady state value. On the other hand, it is interesting that the TT solver resulted in total energy577

errors that are almost identical to those obtained by the full-tensor solvers, as shown in Figures 12b578

and 12d. In all cases, Upwind5 provides lower levels of total mass/energy errors, demonstrating579

the advantage of using higher-order schemes where numerical dissipation is lower.580

6. Conclusion581

In this study, we developed a high-order tensor-train finite volume solver for linear and nonlinear582

shallow water equations (SWEs). The implementation of the 3rd order Upwind3, 5th order Upwind5,583

and 5th order WENO5 reconstruction schemes in the tensor-train format were presented in detail.584

We demonstrated that all reconstruction schemes achieved their formal order of convergence in585

the TT format for the linear and nonlinear SWEs. The upwind methods perform reconstruction586

procedures that directly modify TT cores while the WENO scheme uses TT cross interpolation,587

due to which the WENO scheme was the method with lowest speed-up values among all numerical588

results. For the linear SWEs, the fluxes are computed directly without using any TT rounding589
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Fig. 12: Conservation of total mass and energy for the Stable Barotropic Jet case. Tensor-train
errors are denoted by solid lines and full-tensor errors are denoted by symbols with the same color
code for the same grid level.

or cross interpolation, which resulted in speed-up values up to 124x compared to the standard590

full-tensor implementation. However, the nonlinear SWEs need to calculate the reciprocal of the591

shallow water layer thickness (SWLT) in the TT format followed by applying TT rounding several592

times, which was reflected in our numerical results by reduced the speed-up values compared to593

the linear case. To compute the TT reciprocal of the SWLT, we employed an approximation based594

on Taylor series, which turned out to be quite efficient since the SWLT can usually be decomposed595

as a large mean value and small oscillations. Overall, we showed that the TT finite volume method596
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maintains the accuracy of the underlying numerical discretization while significantly accelerating597

it for the SWEs.598

The long term goal of future work will be to adapt TT methods to layered Boussinesq models599

of the ocean and atmosphere at the climate scale. In the short term, there are two open questions600

of particular interest. First, we wish to extend these methods to spherical, unstructured grids like601

those employed by the ocean and atmosphere components of the U.S. Department of Energy’s602

Energy Exascale Earth System Model (E3SM) (Golaz et al. 2022); it is not clear how the complex603

geometry of these more sophisticated grids will affect the compression obtained by the TT methods604

as we additionally move towards more complex flows. The compression of the model state by TT605

methods is the primary source of speedup in this study, so it needs to be understood how exactly606

this compression is affected by increasing the complexity of the problem. Eventually, we hope607

to apply TT methods to 3-dimensional ocean and atmosphere domains; we are confident that608

this will provided increased speedup versus standard methods as the benefit of TT compression609

increases with problem size and dimension. Second, as these methods are advanced towards climate610

applications, we need to compare performance gains against leadership-class climate codes. This611

will require that we effectively leverage high-performance computing (HPC) hardware and libraries612

so that a direct comparison can be made. We expect that moving towards HPC architectures will613

reveal additional speedups, as much of the currently emerging HPC hardware specifically targets614

the types of tensor operations that are used by TT methods. The results obtained here and in similar615

works on TT methods suggest that these methods could precipitate a paradigm shift in how we616

model geophysical fluids.617
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APPENDIX626

A1. High Order Reconstructions for Upwind and WENO Methods627

Here, we present the details necessary to implement the Upwind3, Upwind5, and WENO5628

reconstruction schemes.629

a. Step 1: “De-cell” averaging over 𝑥630

First, we discuss the reconstruction of �̃�−
𝑖+ 1

2 , 𝑗
, which is a 1-dimensional cell average in 𝑦. The631

procedure to reconstruct �̃�+
𝑖− 1

2 , 𝑗
is similar (see (Shu 1998)) therefore it will not be presented here.632

First, we set 𝑣𝑖, 𝑗 = �̃�𝑖, 𝑗 but the index 𝑗 is dropped in 𝑣𝑖, 𝑗 below for simplicity:633

�̃�−
𝑖+ 1

2 , 𝑗
=

𝑘∑︁
𝑟=0

𝜔𝑟𝑣
(𝑟)
𝑖+1/2 . (A1)

For the 3rd order upwind method (Upwind3), 𝑘 = 1 and634

𝑣
(0)
𝑖+1/2 =

1
2
(𝑣𝑖 + 𝑣𝑖+1) ,

𝑣
(1)
𝑖+1/2 =

1
2
(−𝑣𝑖−1 +3𝑣𝑖) ,

(A2)

while for the 5th order Upwind5 and WENO5 schemes 𝑘 = 2 and635

𝑣
(0)
𝑖+1/2 =

1
6
(2𝑣𝑖 +5𝑣𝑖+1− 𝑣𝑖+2) ,

𝑣
(1)
𝑖+1/2 =

1
6
(−𝑣𝑖−1 +5𝑣𝑖 +2𝑣𝑖+1) ,

𝑣
(2)
𝑖+1/2 =

1
6
(2𝑣𝑖−2−7𝑣𝑖−1 +11𝑣𝑖) .

(A3)

In the upwind methods𝜔𝑟 are determined from the ideal linear weights. For example, 𝜔0 = 2/3 and636

𝜔1 = 1/3 for Upwind3 while 𝜔0 = 3/10, 𝜔1 = 3/5 and 𝜔2 = 1/10 for Upwind5. For the WENO5637

reconstruction, we compute the nonlinear weights using638

𝜔𝑟 =
𝛼𝑟∑2
𝑠=0𝛼𝑠

, (A4)
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where 𝛼𝑟 = 𝑑𝑟/
(
𝛽𝑟 + 𝜀

)2 for 𝑟 = 0,1,2, 𝜀 = Δ𝑥2 as suggested by (Don and Borges 2013), 𝑑0 = 3/10,639

𝑑1 = 3/5 and 𝑑2 = 1/10 (same as the ideal linear weights), and the smoothness indicators are given640

as641

𝛽0 =
13
12
(𝑣𝑖 −2𝑣𝑖+1 + 𝑣𝑖+2)2 +

1
4
(3𝑣𝑖 −4𝑣𝑖+1 + 𝑣𝑖+2)2 ,

𝛽1 =
13
12
(𝑣𝑖−1−2𝑣𝑖 + 𝑣𝑖+1)2 +

1
4
(𝑣𝑖−1− 𝑣𝑖+1)2 ,

𝛽2 =
13
12
(𝑣𝑖−2−2𝑣𝑖−1 + 𝑣𝑖)2 +

1
4
(𝑣𝑖−2−4𝑣𝑖−1 +3𝑣𝑖)2 .

(A5)

b. Step 2: “De-cell” averaging over 𝑦642

Now that we have 1-dimensional cell averages in 𝑦, we will next complete the “de-cell” averaging643

by reconstructing point-wise values at (𝑥𝑖±1/2, 𝑦 𝑗 + 𝛿𝑚Δ𝑦) for each quadrature point 𝑚. The644

procedure is similar to Step 1, but linear and nonlinear reconstruction weights are specifically645

defined for each quadrature point 𝑚.646

As in Step 1, we will set 𝑣𝑖+1/2, 𝑗 = �̃�−
𝑖+ 1

2 , 𝑗
but drop the index 𝑖 + 1/2 in 𝑣𝑖+1/2,, 𝑗 for simplicity.647

Then,648

𝑢−
𝑖+ 1

2 ,𝑦 𝑗+𝛿𝑚Δ𝑦
=

𝑘∑︁
𝑟=0

𝜔
(𝑟)
𝑚 𝑣
(𝑟)
𝑚 , (A6)

where649

𝑣
(𝑟)
𝑚 =

𝑘∑︁
𝑙=0

𝑐𝑚𝑟𝑙𝑣 𝑗−𝑟+𝑙 , (A7)

and {𝑐𝑟𝑙}𝑚 denotes the components of the coefficient matrix 𝐶𝑚 for the particular quadrature point650

𝑚.651

For the Upwind3 scheme where 𝑘 = 1, we perform the reconstruction procedure on 2 quadrature652

points. The coefficient matrix for each quadrature point is given as653

𝐶𝑚=1 =
©­­«

808/627 −390/1351

390/1351 961/1351

ª®®¬ , 𝐶𝑚=2 =
©­­«

961/1351 390/1351

−390/1351 808/627

ª®®¬ , (A8)

and the linear weights are 𝜔(𝑟)𝑚 = 1/2 for 𝑟 = 0,1 and 𝑚 = 1,2.654
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For the Upwind5 and WENO5 schemes where 𝑘 = 2, we consider a reconstruction on 3 quadrature655

points. The coefficient matrices for these points is given as656

𝐶𝑚=1 =

©­­­­«
4725/2927 −2051/2438 249/1097

249/1097 14/15 −467/2913

−467/2913 366/517 2209/4883

ª®®®®¬
,

𝐶𝑚=2 =

©­­­­«
23/24 1/12 −1/24

−1/24 13/12 −1/24

−1/24 1/12 23/24

ª®®®®¬
,

𝐶𝑚=3 =

©­­­­«
2209/4883 366/517 −467/2913

−467/2913 14/15 249/1097

249/1097 −2051/2438 4725/2927

ª®®®®¬
.

(A9)

For the 5th order schemes with 3 quadrature points along the cell interfaces, the ideal linear657

coefficients of the second quadrature point, 𝑚 = 2, become negative and these are treated according658

to the method presented in (Shi et al. 2002). Following their method, we first set the linear weights659

for the first and the last quadrature point as:660

𝛾
(𝑟=0)
𝑚=1 = 882/6305 , 𝛾

(𝑟=1)
𝑚=1 = 403/655 , 𝛾

(𝑟=2)
𝑚=1 = 463/1891 ,

𝛾
(𝑟=0)
𝑚=3 = 463/1891 , 𝛾

(𝑟=1)
𝑚=3 = 403/655 , 𝛾

(𝑟=2)
𝑚=3 = 882/6305 .

Then, the split coefficients are used for the second quadrature point:661

𝛾
(𝑟=0)+
𝑚=2 = 9/214 , 𝛾

(𝑟=1)+
𝑚=2 = 98/107 , 𝛾

(𝑟=2)+
𝑚=2 = 9/214 ,

𝛾
(𝑟=0)−
𝑚=2 = 9/67 , 𝛾

(𝑟=1)−
𝑚=2 = 49/67 , 𝛾

(𝑟=2)−
𝑚=2 = 9/67 .

The Upwind5 scheme simply sets 𝜔(𝑟)𝑚 = 𝛾
(𝑟)
𝑚 for 𝑚 = 1,3 and 𝑟 = 0,1,2 as these coefficients are662

already positive, then applies Equation (A6). For the second quadrature point 𝑚 = 2, we perform663

the reconstruction using664

𝑢−
𝑖+ 1

2 ,𝑦 𝑗+𝛿2Δ𝑦
= 𝜎+𝑢+−𝜎−𝑢− , (A10)
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where 𝜎+ = 107/40 and 𝜎− = 67/40 with665

𝑢± =
𝑘∑︁

𝑟=0
𝛾
(𝑟)±
𝑚=2𝑣

(𝑟)
𝑚=2 , (A11)

The WENO5 scheme is similar to Upwind5 but it computes the nonlinear weights, instead. For666

𝑚 = 1,3, it uses Equation (A6) with the nonlinear weights667

𝜔
(𝑟)
𝑚 =

𝛼
(𝑟)
𝑚∑2

𝑠=0𝛼
(𝑠)
𝑚

, (A12)

where 𝛼
(𝑟)
𝑚 = 𝛾

(𝑟)
𝑚 /

(
𝛽𝑟 + 𝜀

)2 for 𝑟 = 0,1,2 and the smoothness indicators are given as668

𝛽0 =
13
12

(
𝑣 𝑗 −2𝑣 𝑗+1 + 𝑣 𝑗+2

)2 + 1
4

(
3𝑣 𝑗 −4𝑣 𝑗+1 + 𝑣 𝑗+2

)2
,

𝛽1 =
13
12

(
𝑣 𝑗−1−2𝑣 𝑗 + 𝑣 𝑗+1

)2 + 1
4

(
𝑣 𝑗−1− 𝑣 𝑗+1

)2
,

𝛽2 =
13
12

(
𝑣 𝑗−2−2𝑣 𝑗−1 + 𝑣 𝑗

)2 + 1
4

(
𝑣 𝑗−2−4𝑣 𝑗−1 +3𝑣 𝑗

)2
.

(A13)

For the second quadrature point 𝑚 = 2, WENO5 uses Equation (A10) with the same 𝜎± but it sets669

𝑢± as670

𝑢± =
𝑘∑︁

𝑟=0
𝜔
(𝑟)±
𝑚=2𝑣

(𝑟)
𝑚=2 , (A14)

where 𝛼
(𝑟)±
2 = 𝛾

(𝑟)±
𝑚=2/

(
𝛽𝑟 + 𝜀

)2 for 𝑟 = 0,1,2.671

For the reconstruction procedure in the y-direction, the above-mentioned procedures are repeated672

by applying Step 1 in the y-direction to construct 𝑢𝑖, 𝑗+1/2 (a 1-dimensional cell average in x) and673

Step 2 in the x-direction to compute 𝑢±
𝑥𝑖+𝛿𝑚Δ𝑥,𝑦 𝑗∓1/2

on quadrature points 𝑚.674

A2. Nondimensional Form of the Shallow Water Equations675

Here, we will briefly describe the ‘‘nondimensionalization’’ of the governing equations. Denot-676

ing dimensional variables by a star, let us rewrite the shallow water equations:677

𝜕𝑈𝑈𝑈∗

𝜕𝑡∗
+ 𝜕𝐹𝐹𝐹

∗

𝜕𝑥∗
+ 𝜕𝐺𝐺𝐺

∗

𝜕𝑦∗
= 𝑆𝑆𝑆∗ . (A15)
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For the linear case, we have678

𝑈𝑈𝑈∗ =

©­­­­«
𝜂∗

𝑢∗

𝑣∗

ª®®®®¬
, 𝐹𝐹𝐹∗ =

©­­­­«
𝐻∗𝑢∗

𝑔∗𝜂∗

0

ª®®®®¬
, 𝐺𝐺𝐺∗ =

©­­­­«
𝐻∗𝑣∗

0

𝑔∗𝜂∗

ª®®®®¬
, 𝑆𝑆𝑆∗ =

©­­­­«
0

𝑓 ∗𝑣∗

− 𝑓 ∗𝑢∗

ª®®®®¬
, (A16)

and for the nonlinear case,679

𝑈𝑈𝑈∗ =

©­­­­«
ℎ∗

ℎ∗𝑢∗

ℎ∗𝑣∗

ª®®®®¬
, 𝐹𝐹𝐹∗ =

©­­­­«
ℎ∗𝑢∗

ℎ∗𝑢∗2 + 1
2𝑔
∗ℎ∗2

ℎ∗𝑢∗𝑣∗

ª®®®®¬
, 𝐺𝐺𝐺∗ =

©­­­­«
ℎ∗𝑣∗

ℎ∗𝑢∗𝑣∗

ℎ∗𝑣∗2 + 1
2𝑔
∗ℎ∗2

ª®®®®¬
, 𝑆𝑆𝑆∗ =

©­­­­«
0

𝑓 ∗ℎ∗𝑣∗

− 𝑓 ∗ℎ∗𝑢∗

ª®®®®¬
.

(A17)

Next, we define characteristic scales for each variable in the SWEs, such as the reference length680

𝐿∗
𝑟𝑒 𝑓

, reference velocity 𝑈∗
𝑟𝑒 𝑓

, reference time 𝑡∗
𝑟𝑒 𝑓

= 𝐿∗
𝑟𝑒 𝑓
/𝑈∗

𝑟𝑒 𝑓
, reference height 𝐻∗

𝑟𝑒 𝑓
, reference681

acceleration 𝑔∗
𝑟𝑒 𝑓

=𝑈∗
2

𝑟𝑒 𝑓
/𝐻∗

𝑟𝑒 𝑓
, reference frequency 𝑓 ∗

𝑟𝑒 𝑓
=𝑈∗

𝑟𝑒 𝑓
/𝐿∗

𝑟𝑒 𝑓
. Then, the nondimensional682

parameters are defined as683

𝑡 =
𝑡∗

𝑡∗
𝑟𝑒 𝑓

, 𝑥 =
𝑥∗

𝐿∗
𝑟𝑒 𝑓

, 𝑦 =
𝑦∗

𝐿∗
𝑟𝑒 𝑓

,

𝜂 =
𝜂∗

𝐻∗
𝑟𝑒 𝑓

, ℎ =
ℎ∗

𝐻∗
𝑟𝑒 𝑓

,

𝑢 =
𝑢∗

𝑈∗
𝑟𝑒 𝑓

, 𝑣 =
𝑣∗

𝑈∗
𝑟𝑒 𝑓

,

𝑔 =
𝑔∗

𝑔∗
𝑟𝑒 𝑓

, 𝑓 =
𝑓 ∗

𝑓 ∗
𝑟𝑒 𝑓

.

(A18)

Substituting these into Equations (A15) to (A17) gives Equations (1) to (3). Note that both684

set of equations have the same form. However, in the dimensional form, 𝐶𝜀 in Equations (24)685

and (25) needs to attain extremely small values, e.g. 𝐶𝜀 = 10−18 − 10−22, due to extremely large686

computational domains. On the other hand, the nondimensional form significantly decreases this687

ambiguity and 𝐶𝜀 = 1 seems to work well in the most numerical examples discussed in Section 5.688

Finally, we summarize the reference values used in the nondimensionalization of the governing689

equations in Table A1 below.690
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Test Case 𝐿∗
𝑟𝑒 𝑓
(𝑚) 𝑈∗

𝑟𝑒 𝑓
(𝑚/𝑠) 𝐻∗

𝑟𝑒 𝑓
(𝑚)

Coastal Kelvin Wave 5×106 5×10−3 0.1
Inertia-Gravity Wave 107 1.622×10−3 0.2
Barotropic Tide 25×104 3.163×10−3 0.2
Manufactured Solution 107 10−2 500
Stable Barotropic Jet 2𝜋×6371220 20 8000

Table A1: Characteristic scales for numerical examples.
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