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Abstract. Let p be an odd prime and consider the finite field Fp2 .
Given a linear code C ⊂ Fn

p2 , we use algebraic number theory to
construct an associated lattice ΛC ⊂ On

L for L an algebraic number
field and OL the ring of integers of L. We attach a theta series
θΛC to the lattice ΛC and prove a relation between θΛC and the
complete weight enumerator evaluated on weight one theta series.

1. Introduction

Let p be a prime, q = pf and C ⊂ Fn
q be an [n, k]-code, i.e., a k-

dimensional Fq-subspace of Fn
q . Let O be a Z-module and suppose we

have a surjection Π : On → Fn
q . For instance, one could take f = 1,

O = Z, and Π to be the projection modulo p map in each coordinate.
One obtains a lattice by considering ΛC = Π−1(C) ⊂ On. Furthermore,
one can associate a theta series θΛC to the lattice ΛC. The relationship
between the code C, the lattice ΛC, and the theta series θΛC can be
exploited to use properties of one to prove results on the others. For
example, one can show if Λ ⊂ Rn is an even unimodular lattice, then
n ≡ 0 (mod 8) by studying the associated theta series.

The relations between codes, lattices, and theta series have been
studied by numerous authors. For instance, van der Geer and Hirze-
bruch studied the case of codes over Fp, O = Z[ζp], and showed the
associated theta series is a Hilbert modular form of full level SL2(Z[ζp+
ζ−1
p ]). They use these results to prove the theta series is the Lee weight

enumerator polynomial of the code evaluated on various weight one
theta series. One can see [7, Chapter 5] for a survey of this work. In
[4], they use Hilbert Jacobi forms instead and prove results on the com-
plete weight enumerator. Codes over F4 are studied in [2] in relation
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to Siegel Hilbert modular forms defined over Q(
√

5). Taking p to be
an odd prime and considering codes over Fp2 and Fp×Fp, one can see
[11, 12] in the context of imaginary quadratic fields and theta series
defined over the imaginary quadratic field. There has been work done
for codes defined over rings as well, see for example [1, 3, 5].

In this paper we study codes defined over Fp2 for p an odd prime,
but rather than working with imaginary quadratic fields we consider the
ring of integers OL of L = Q(ζp,

√
D) for D > 1 square-free and p inert

in Q(
√
D). Given a code C ⊂ Fn

p2 , we study the arithmetic of OL and
use it to construct an even integral lattice ΛC ⊂ OnL and show that it
is not unimodular. We construct theta series that are Hilbert modular
forms and prove a relation between this theta series and the complete
weight enumerator polynomial of the code evaluated on certain weight
one theta series. We note that the weight one theta series are not
algebraically independent, so our result is not optimal. Finding the
appropriate generalized Lee weight and associated polynomial is the
subject of future work.

2. Some algebraic number theory

In this section we give some of algebraic number theory results that
are necessary for our lattice construction. Most of these results are
fairly standard, but we collect them here in one section with references
and proofs for the convenience of the reader. One can see [13] for more
results on cyclotomic fields.

Let E/F be a Galois extension of number fields. Let OE (resp. OF )
denote the ring of integers of E (resp. F ); it is a free OF -module of
rank m = [E : F ]. Let Gal(E/F ) = {σ1, . . . , σm}. The trace map from
E to F is a F -linear map defined by

TrE/F (x) =
m∑
i=1

σi(x).

Moreover, TrE/F (OE) ⊂ OF . The norm map from E to F is also a
F -linear map; it is defined by

NE/F (x) =
m∏
i=1

σi(x).

Let F = Q. The discriminant of the number field E is given by

∆E = det(TrE/Q(xixj))

= det(σi(xj))
2

where {x1, . . . , xm} is a Z-basis of OE.
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We will also make use of the different of a number field. Define

O∨E = {x ∈ E : TrE/Q(xy) ∈ Z for every y ∈ OE}.

The different of the number field E is given by

DE = (O∨E)−1 = {x ∈ E : xy ∈ OE for every y ∈ O∨E}

We now specialize to the case of interest for this paper. Fix an odd
prime p and a positive square-free integer D so that p is inert in the
field K = Q(

√
D), i.e., so that f(x) = x2 − D is irreducible modulo

p if D ≡ 2, 3 (mod 4) or f(x) = x2 − x + (1 − D)/4 is irreducible
modulo p if D ≡ 1 (mod 4). Let OK denote the ring of integers of

K. In particular, we have OK = Z[
√
D] if D ≡ 2, 3 (mod 4) and

OK = Z
[

1+
√
D

2

]
if D ≡ 1 (mod 4). Let ζp be a primitive pth root of

unity and set L = Q(
√
D, ζp).

Proposition 2.1. We have

OL =

{
Z[
√
D, ζp] if D ≡ 2, 3 (mod 4)

Z
[

1+
√
D

2
, ζp

]
if D ≡ 1 (mod 4).

Proof. In light of [13, Theorem 2.6], it only remains to show that K ∩
Q(ζp) = Q. As the degree of K over Q is two, we either have K ∩
Q(ζp) = Q or K ⊂ Q(ζp). However, as p is totally ramified in Q(ζp)
and inert in K, it cannot be that K ⊂ Q(ζp). �

As noted in the previous proof, p is totally ramified in Q(ζp). In
particular, pZ[ζp] = 〈1 − ζp〉p−1. Set p = (1 − ζp)OL. It is well-known
that p = (1− ζap )OL for any integer a with a 6≡ 0 (mod p).

Proposition 2.2. The ramification degree of p over p is p− 1 and the
residue class degree is 2, i.e., pOL = pp−1 and OL/p ∼= Fp2.

Proof. This follows immediately from the fact that p is inert in K,
totally ramified in Q(ζp), and OL = OK · Z[ζp]. �

SinceK∩Q(ζp) = Q, basic Galois theory gives Gal(L/Q) ∼= Gal(K/Q)×
Gal(Q(ζp)/Q) ∼= Z/2Z × (Z/pZ)×. This allows us to enumerate the
elements of Gal(L/Q) as σr,j for j = 0, 1 and 1 ≤ r ≤ p− 1 where

σr,j(ζp) = ζrp

σr,j(
√
D) = (−1)j

√
D.

Lemma 2.3. Let x ∈ Q(ζp). Then TrL/Q(x
√
D) = 0.
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Proof. Observe

TrL/Q(x
√
D) =

p−1∑
r=1

(σr,0(x
√
D) + σr,1(x

√
D))

=

p−1∑
r=1

(
√
Dσr,0(x)−

√
Dσr,1(x))

= 0

since σr,0|Q(ζp) = σr,1|Q(ζp). �

Lemma 2.4. Given x ∈ OL, TrL/Q(x) ∈ 2?Z where ? = 0 if D ≡ 1
(mod 4) and ? = 1 if D ≡ 2, 3 (mod 4).

Proof. The case D ≡ 1 (mod 4) is obvious so we only need to consider

the case OL = Z[
√
D, ζp]. Let x ∈ OL and write x =

p−2∑
j=0

(aj + bj
√
D)ζjp

with aj, bj ∈ Z. Observe that

TrL/Q(x) =

p−2∑
j=0

(aj TrL/Q(ζjp) + bj TrL/Q(
√
Dζjp))

=

p−2∑
j=0

aj TrL/Q(ζjp)

=

p−2∑
j=0

p−2∑
r=0

aj(σr,0(ζjp) + σr,1(ζjp))

=

p−2∑
j=0

p−2∑
r=0

aj2σr,0(ζjp)

= 2

p−2∑
j=0

aj TrQ(ζp)/Q(ζjp)

∈ 2Z.

�

Lemma 2.5. We have TrL/Q(p) ⊂ pZ.

Proof. Let x ∈ p. We can write x = y(1 − ζp) for some y ∈ OL. Note
that σ(x) = σ(y)(1− ζaσp ) for some integer aσ for each σ ∈ Gal(L/Q).
Thus, σ(x) ∈ p for each σ ∈ Gal(L/Q). This gives that TrL/Q(x) ∈
p ∩ Z = pZ. �
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The largest totally real subfield of L, denoted L+, is the field fixed by
complex conjugation. The fact that Q(ζp)

+ = Q(ζp + ζ−1
p ) and D > 0

gives L+ = Q(
√
D, ζp + ζ−1

p ) and so [L : L+] = 2.

Lemma 2.6. Let x ∈ OL+. Then TrL/Q(x) ∈ 2 · 2?Z.

Proof. It is enough to show TrL/Q(x) ∈ 4Z for x ∈ {1,
√
D, (ζjp +

ζ−jp ),
√
D(ζjp+ζ

−j
p )} and TrL/Q(x) ∈ 2Z for x ∈

{
1, 1+

√
D

2
, (ζjp + ζ−jp ), 1+

√
D

2
(ζjp + ζ−jp )

}
.

Note that TrL/Q(1) = [L : Q], which is divisible by 4. We saw above

that TrL/Q(x
√
D) = 0 for x ∈ Q(ζp). Consider TrL/Q(ζjp + ζ−jp ). Note

that given a tower of number fields F1 ⊂ F2 ⊂ F3, we have

TrF3/F1 = TrF2/F1 ◦TrF3/F2 .

Thus,

TrL/Q(ζjp + ζ−jp ) = TrQ(ζp)/Q(TrL/Q(ζp)(ζ
j
p + ζ−jp ))

= TrQ(ζp)/Q(2(ζjp + ζ−jp ))

= 2(TrQ(ζp)/Q(ζjp) + TrQ(ζp)/Q(ζ−jp ))

= 2(−1− 1)

= −4.

This gives the result in the case D ≡ 2, 3 (mod 4). Note that

TrL/Q

(
1 +
√
D

2

)
=

1

2

(
TrL/Q(1) + TrL/Q(

√
D)
)

= p− 1.

Finally, observe

TrL/Q

(
1 +
√
D

2
(ζjp + ζ−jp )

)
=

1

2

(
TrL/Q(ζjp + ζ−jp ) + TrL/Q(

√
D(ζjp + ζ−jp ))

)
= −2.

This gives the result. �

We have ∆Q(ζp) = (−1)
p−1
2 pp−2 and ∆K = 4D or D depending on

if D ≡ 2, 3 (mod 4) or D ≡ 1 (mod 4). Since p was chosen to be
relatively prime to 4D, [13, Theorem 2.6] gives that

∆L = ∆p−1
K ∆2

Q(ζp)

=

{
(−1)p−1p2p−4Dp−1 if D ≡ 1 (mod 4)
(−1)p−1p2p−4(4D)p−1 if D ≡ 2, 3 (mod 4).
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3. Some generalities on lattices

We collect some general facts on lattices. This material can be found
in [7, Chapter 1]. One generally defines a lattice as a subset Γ ⊂ Rn so
that there exists a basis {v1, . . . , vn} of Rn so that Γ = Zv1⊕· · ·⊕Zvn.
The lattices we encounter in this paper will not be subsets of Rn, so
we need a slightly more general definition. We show our more general
lattices can be identified with the traditional definition of lattices.

Let R be a commutative ring with identity. A symmetric bilinear
form module (S, b) is a free R-module S of rank n along with a sym-
metric bilinear form b : S × S → R. In the case that R = Z, we will
refer to S as a symmetric integral lattice, or just a lattice. The dual
module S∨ is the module HomR(S,R). We say (S, b) is unimodular if
the canonical homomorphism S → S∨ given by x 7→ b(x, ·) is bijective.

Proposition 3.1. The integral lattices in Rn are precisely the sym-
metric bilinear modules (S, b) over Z where b : S×S → Z is a positive
definite symmetric bilinear form.

Proof. Let Γ ⊂ Rn be an integral lattice. Then clearly Γ is a free
Z-module of rank n and the usual inner product is a positive definite
symmetric bilinear form.

Now let (S, b) be a symmetric bilinear module over Z. Consider the
real vector space V = S ⊗Z R. We have that b extends to a positive
definite symmetric bilinear form V × V → R via

b

(∑
i

xi ⊗ αi,
∑
j

yj ⊗ βj

)
:=
∑
i,j

αiβjb(xi, yj).

As V is a real vector space with a positive definite symmetric bilin-
ear form, we can choose an orthonormal basis {v1, . . . , vn} of V with
respect to b. We have V is isomorphic to Rn as an R-vector space
by mapping {v1, . . . , vn} to the standard basis {e1, . . . , en} of Rn. Un-
der this isomorphism we have b is identified with the standard inner
product and the image of S is an integral lattice. �

Given a lattice Γ ⊂ Rn, we have Rn/Γ is compact. We define

vol(Γ) := vol(Rn/Γ) = | det(v1, . . . , vn)|

where Γ = Zv1 ⊕ · · · ⊕ Zvn. Set ai,j = 〈vi, vj〉 and A = (ai,j). We have

vol(Γ) =
√

det(A).
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Note that det(A) is independent of the basis v1, . . . , vn chosen for Γ, so
we write disc(Γ) for det(A). We have that

vol(Γ) =
1

vol(Γ∨)
.

Moreover, if Γ1 and Γ2 are lattices in Rn with Γ1 ⊂ Γ2, then

vol(Γ1) = vol(Γ2)|Γ2/Γ1|.
Let E/Q be a number field of degree m = r + 2s where r is the

number of real embeddings of E and s is the number of pairs of complex
embeddings. The canonical embedding of E into Rm is given by

σE : E → Rm

x 7→ (σ1(x), . . . , σr(x),<(σr+1(x)),=(σr+1(x)), . . . ,<(σr+s(x)),=(σr+s(x)))

where σ1, . . . , σr are the distinct real embeddings and σr+1, . . . , σr+2s

are the complex embeddings ordered so that σr+j is conjugate to σr+2s−j.
As our lattices will be constructed via rings of integers in number

fields, we briefly review that material. Let E/Q be a number field of
degree m. Let Λ be a Z-submodule of E of rank m and finite index k.
We can realize Λ inside Rm via σE(Λ). This is a lattice in Rm of rank
m and volume

vol(σE(Λ)) = k
√
| disc(E)|.

Note this differs from the usual Lebesgue measure by a factor of 2s.
One can see [9, Prop. 5.2] for this formula. In terms of the symmetric
bilinear modules, this corresponds to the case we take S = Λ and
b(x, y) = TrE/Q(xy).

4. A particular bilinear form

We will make use of a particular bilinear form defined on OL. We
define that bilinear form in this section and calculate the relevant prop-
erties.

Definition 4.1. For x, y ∈ OL, define

bL/Q(x, y) = TrL/Q

(
xy

2?p

)
where, as above, ? = 0 if D ≡ 1 (mod 4) and ? = 1 if D ≡ 2, 3 (mod 4)
and y denotes complex conjugation.

It is clear from the properties of the trace map that this is in fact a
bilinear form.

Proposition 4.2. The bilinear form bL/Q(·, ·) is symmetric and posi-
tive definite on OL.
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Proof. Let x ∈ OL, x 6= 0. We have

bL/Q(x, x) = TrL/Q

(
xx

2?p

)
=

∑
σ∈Gal(L/Q)

σ

(
xx

2?p

)
=

1

2?p

∑
σ∈Gal(L/Q)

σ(xx)

=
1

2?p

∑
σ∈Gal(L/Q)

σ(x)σ(x)

> 0.

Thus, we have that bL/Q(·, ·) is positive definite.
Observe that complex conjugation is an element of Gal(L/Q). Given

any α ∈ OL we have

TrL/Q(α) =
∑

σ∈Gal(L/Q)

σ(α)

=
∑

τ∈Gal(L/Q)

τ(α)

= TrL/Q(α).

Thus, for x, y ∈ OL we have

bL/Q(x, y) = TrL/Q

(
xy

2?p

)
= TrL/Q

(
xy

2?p

)
= TrL/Q

(
yx

2?p

)
= bL/Q(y, x).

�

Proposition 4.3. The bilinear form bL/Q(·, ·) has determinant

det(bL/Q(·, ·)) =
Dp−1

p2
.

Proof. We have {1, ζp, ..., ζp−2
p ,
√
D,
√
Dζp, ...,

√
Dζp−2

p } is a Z-basis of

OL ifD ≡ 2, 3 (mod 4) and
{

1, ζp, ..., ζ
p−2
p , 1+

√
D

2
, 1+

√
D

2
ζp, ...,

1+
√
D

2
ζp−2
p

}
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is a Z-basis of OL if D ≡ 1 (mod 4). We claim that complex con-
jugation acting on this basis has determinant (−1)2(p−2) = 1. To
see this, observe that each pair {ζjp , ζp−1−j

p } is exchanged via com-
plex conjugation, so each such pair contributes a −1 to the deter-
minant if j 6= p − 1 − j. Similarly, a pair {

√
Dζjp ,

√
Dζp−1−j

p } or{
{1+

√
D

2
ζjp ,

1+
√
D

2
ζp−1−j
p

}
contributes a −1 to the determinant when

j 6= p− 1− j. There are 2(p− 2) such pairs. The other basis elements
are fixed under complex conjugation, so we have the claim.

We have via the definition of the discriminant of L that det(TrL/Q) =
∆L. Composing these results gives the determinant of the bilinear form
(x, y) 7→ TrL/Q(xy) is ∆L. Thus, we have

det(bL/Q(·, ·)) =
∆L

(2?p)2(p−1)
.

Using that p is odd so that (−1)p−1 = 1, we have the result. �

5. Lattices from codes

With L = Q(ζp,
√
D) as before, we have a natural surjection π :

OL → Fp2 with kernel p, c.f. Proposition 2.2. We define Π : OnL → Fn
p2

by mapping componentwise via π. This is clearly still a surjection. Let
C ⊂ Fn

p2 be an [n, k]-code, i.e., a k-dimensional subspace. Define

ΛC = Π−1(C).

We have Fn
p2/C ∼= Fn−k

p2 , so C is a subgroup of index p2(n−k) of Fn
p2 .

Thus, ΛC is a subgroup of index p2(n−k) of OnL, i.e., a free Z-module of
index p2(n−k).

Given x ∈ OnL with x = (x1, . . . , xn), we define x = (x1, . . . , xn). For
x, y ∈ OnL, define

x · y =
n∑
j=1

xjyj.

Lemma 5.1. Let x, y ∈ OnL. We have

x · y ≡ x · y (mod p)

where we recall p = (1− ζp)OL.

Proof. It is enough to show xjyj ≡ xjyj (mod p) for each j. Moreover,
it is enough to show this for a basis of OL over Z. Using that D > 0,

we reduce this to showing ζjp ≡ ζjp (mod p). Noting that ζjp = ζp−jp and

that p = (1− ζkp )OL for any k 6≡ 0 (mod p) we have the result. �
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We define a symmetric bilinear form on OnL by setting

BL/Q(x, y) = TrL/Q

(
x · y
2?p

)
=

n∑
j=1

TrL/Q

(
xjyj
2?p

)

=
n∑
j=1

bL/Q(xj, yj).

Note that this is a positive definite symmetric bilinear form based on
the fact that bL/Q(·, ·) is such a form.

Theorem 5.2. Let C ⊂ Fn
p2 be a self-orthogonal code, i.e., C ⊂ C⊥

where C⊥ = {α ∈ Fn
p2 : α · c = 0 for all c ∈ C}. The associated lattice

ΛC is integral, even, and rank 2n(p−1). Moreover, we have ΛC⊥ ( Λ∨C .

Proof. Let x, y ∈ ΛC. Since C ⊂ C⊥, we have Π(x) · Π(y) = 0. As the
map Π is reduction modulo p componentwise, this gives that x · y ≡ 0
(mod p). Applying Lemma 5.1, we obtain that x · y ≡ 0 (mod p)
for all x, y ∈ ΛC. This allows us to conclude via Lemma 2.5 that
TrL/Q(x · y) ∈ pZ. Moreover, Lemma 2.4 gives that TrL/Q(x · y) ∈ 2?Z.
Since p is odd, this gives TrL/Q(x · y) ∈ 2?pZ for all x, y ∈ ΛC. Thus,
B(x, y) ∈ Z for all x, y ∈ ΛC, i.e., the lattice ΛC is integral.

To see ΛC is even, just use the fact that x ·x is real, so TrL/Q(x ·x) ∈
2 · 2?Z by Lemma 2.6. Thus, TrL/Q(x · x) ∈ 2 · 2?pZ for all x ∈ ΛC,
which gives BL/Q(x, x) ∈ 2Z.

Let x ∈ ΛC and y ∈ ΛC⊥ . Then Π(x) ∈ C and Π(y) ∈ C⊥, so
Π(x)·Π(y) = 0. As above, this gives x·y ≡ 0 (mod p) and BL/Q(x, y) ∈
Z. Thus, ΛC⊥ ⊂ Λ∨C .

It remains to show the containment is proper. To do this, we show
the volumes are not equal. From above we have the index of ΛC in OnL
is p2(n−k). We also have that vol(OnL) =

√
Dn(p−1)

p2n
, so

vol(ΛC) =
Dn(p−1)/2

pn
p2(n−k) = Dn(p−1)/2pn−2k.

Thus,
vol(Λ∨C ) = Dn(1−p)/2p2k−n.

Now we must calculate vol(ΛC⊥). Note that the dimension of C⊥ is
n− k, so the index of ΛC⊥ in OnL is p2k. Thus, we have

vol(ΛC⊥) =
Dn(p−1)/2

pn
p2k = Dn(p−1)/2p2k−n.
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Note that if we use the equation for volumes, we have

|Λ∨C/ΛC⊥| = vol(ΛC⊥)/ vol(Λ∨C )

= Dn(p−1).

Thus, the containment is strict since D > 1. �

6. Theta Series

In this section we set-up the general theory we will need before spe-
cializing back to the case of interest in the following section.

Let E be a totally real number field of degree m = [E : Q], em-
beddings σ1, . . . , σm : E → R, and ring of integers OE. Let V be an
n-dimensional E-vector space with a totally positive definite symmet-
ric bilinear form b(·, ·), i.e., b : V ×V → E is a symmetric bilinear form
so that σj(b(v, v)) > 0 for all nonzero v ∈ V . Let Λ be an E-lattice in
V . We assume Λ is integral and even. Note this gives that Λ ⊂ Λ∨.
We now explain how to attach theta functions to the lattice Λ.

Define the complex upper half plane as

h = {z ∈ C : =(z) > 0}.

We have an action of SL2(OE) on hm given by[
a b
c d

]
· z =

(
σj(a)zj + σj(b)

σj(c)zj + σj(d)

)
j=1,...,m

where z = (z1, . . . , zm) ∈ hm.
Let I ⊂ OE be an ideal. We define subgroups Γ(I), Γ1(I), and Γ0(I)

of SL2(OE) as

Γ0(I) =

{[
a b
c d

]
∈ SL2(OE) : c ≡ 0 (mod I)

}
Γ1(I) =

{[
a b
c d

]
∈ Γ0(I) : a ≡ d ≡ 1 (mod I)

}
,

and

Γ(I) =

{[
a b
c d

]
∈ Γ1(I) : b ≡ 0 (mod I)

}
.

Let f : hm → C and k ∈ Z. We define an action of SL2(OE) on such
functions by defining

(f |kγ)(z) =
m∏
j=1

(σj(c)zj + σj(d))−kf(γ · z)
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where γ =

[
a b
c d

]
and z = (z1, . . . , zm). Let Γ be Γ(I), Γ1(I), or

Γ0(I) for some ideal I. We say a holomorphic function f : hm → C
(if E = Q we also require “holomorphic at the cusps”) that satisfies
(f |kγ)(z) = f(z) for all γ ∈ Γ is a modular form of weight k and level Γ.
We denote the space of such forms by Mk(Γ). Let χ : (OE/I)× → C×

be a character. We denote the space of modular forms f satisfying

(f |kγ)(z) = χ(d)f(z) for all γ =

[
a b
c d

]
∈ Γ0(I) by Mk(I, χ). While

we will not need it, there is a very rich theory of modular forms as they
play a seminal role in number theory. The interested reader can see [6]
in the case E = Q and [8] for the general case.

For a given v0 ∈ V , define a theta function θ : hm → C by setting

θv0+Λ(z) =
∑

v∈v0+Λ

eπiTr(zB(v,v)),

where

Tr(zB(v, v)) =
m∑
j=1

zjσj(B(v, v)).

We have via [7, Proposition 5.7] that θv0+Λ is holomorphic on hm.

Proposition 6.1. [7, Proposition 5.8] Let k = n/2, v ∈ Λ∨, and

γ =

[
a b
c d

]
∈ SL2(OE). We have

θv+Λ|kγ = i−km NE/Q(c)−k [Λ∨ : Λ]
−1/2

·
∑

w∈Λ∨/Λ

e−πiTr(2bB(v,w)+bdB(w,w))
∑

u∈Λ∨/cΛ
u≡v+dw (mod Λ)

eπiTr(acB(u,u))

 θw+Λ

if c 6= 0 and

θv+Λ|kγ = NE/Q(d)−keπiTr(abB(v,v))θav+Λ

if c = 0.

We define the level of Λ as

L =

{
x ∈ OE : Tr

(
xOE

B(v, v)

2

)
⊂ Z for all v ∈ Λ∨

}
.

We have that L is an ideal in OE via [7, Proposition 5.9]. Moreover,
the same reference gives that L = OE if and only if Λ = Λ∨.
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Given γ =

[
a b
c d

]
∈ Γ0(L), define

ε(γ) =

{
i−km NE/Q(c)−k [Λ∨ : Λ]−1/2∑

u∈Λ/cΛ e
πiTr(acB(u,u)) for c 6= 0,

NE/Q(d)−k for c = 0.

Proposition 6.2. [7, Proposition 5.10] There exists a character χ :
(OE/L)× → {±1} so that

ε(γ) = χ(d)

for γ =

[
a b
c d

]
∈ Γ0(L) where the input in χ is understood to be modulo

L. Moreover, for ` ∈ Z with gcd(`,L) = 1, ` prime, one has

χ(`) =

(
(−1)mn/2 [Λ∨ : Λ]

`

)
.

Theorem 6.3. [7, Theorem 5.8] For v ∈ Λ∨ we have

θv+Λ|kγ = θv+Λ

for all γ ∈ Γ(L) and

θΛ|kγ = χ(d)θΛ

for all γ ∈ Γ0(L), i.e., θv+Λ ∈Mk(Γ(L)) and θΛ ∈Mk(L, χ).

7. Theta series and lattices from codes

In this section we apply the results on theta series from the previous
section to the lattices constructed from codes in Section 5.

Recall we have L = Q(
√
D, ζp) and L+ = Q(

√
D, ζp + ζ−1

p ). Note
that L+ is a totally real number field of degree p−1, i.e., in the setting
of the previous section we have E = L+ and m = p − 1. We set
V = L, a 2-dimensional L+-vector space. Observe that p ⊂ OL is
a L+-lattice in L. Define a positive definite symmetric bilinear form
bL/L+ : L× L→ L+ by setting

bL/L+(x, y) = TrL/L+

(
xy

2?p

)
=
xy + xy

2?p
.

It is easy to check this is well-defined and is a positive definite sym-
metric bilinear form. Note that

bL/L+(x, x) =
21−?xx

p
.
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Let Gal(L+/Q) = {σ1, . . . , σp−1}. For each j ∈ p∨ we define a theta
function as in the previous section by

θj(z) := θj+p(z)

=
∑
x∈j+p

eπiTr(zbL/L+ (x,x))

where z = (z1, . . . , zp−1) ∈ hp−1 and

Tr(zbL/L+(x, x)) =

p−1∑
j=1

zjσj(bL/L+(x, x))

=

p−1∑
j=1

21−?

p
zjσj (xx) .

Thus, we have via Theorem 6.3 that θj ∈ M1(Γ(L)). We now show
that L = ℘ := p ∩ L+. Our first step in this is calculating

p∨ = {x ∈ L : TrL+/Q(bL/L+(x, z)) ∈ Z for all z ∈ p}.

Observe that

TrL+/Q(bL/L+(x, z)) = TrL+/Q

(
TrL/L+

(
xz

2?p

))
= TrL/Q

(
xz

2?p

)
.

Thus, we can rewrite p∨ as

p∨ =

{
x ∈ L : TrL/Q

(
xz

2?p

)
∈ Z for all z ∈ p

}
.

The main facts we use in this calculation we saw before, namely,

TrL/Q(a) = a[L : Q] for all a ∈ Q,

TrL/Q(ζjp) = −2 for all j 6≡ 0 (mod p),

TrL/Q(x
√
D) = 0 for all x ∈ Q(ζp).

Proposition 7.1. The lattice p∨ consists of elements in L of the form

x =

p−2∑
j=0

(aj + bj
√
D)ζjp
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where aj ∈
1

21−?Z and bj ∈
1

21−?D
Z. In other words, as Z-modules we

have

p∨ ∼=

(
p−2⊕
j=0

1

21−?Z

)
⊕

(
p−2⊕
j=0

1

21−?D
Z

)
.

Proof. Let x ∈ L and write

x =

p−2∑
j=0

(aj + bj
√
D)ζjp

with aj, bj ∈ Q. We have ζjp(1− ζp) ∈ p for all j. For x ∈ p∨, we must

have b(x, z) = TrL/Q

(
xz

2?p

)
∈ Z for all z ∈ p.

Consider z = 1− ζp, so z = 1− ζp. We have

b(x, z) =
1

2?p
TrL/Q(x(1− ζp))

=
1

2?p
TrL/Q

(
p−2∑
j=0

(aj +
√
Dbj)ζ

j
p(1− ζp)

)

=
1

2?p

p−2∑
j=0

(
TrL/Q(ajζ

j
p − ajζj+1

p ) + TrL/Q(
√
D(bjζ

j
p − bjζj+1

p ))
)

=
1

2?p

p−2∑
j=0

aj
(
TrL/Q(ζjp)− TrL/Q(ζj+1

p )
)

=
1

2?p

(
a0(TrL/Q(1)− TrL/Q(ζp))

)
=

1

2?p
a0([L : Q] + 2)

=
a0(2(p− 1) + 2)

p

= 21−?a0.

Thus, we must have a0 ∈ 1
21−?

Z. Similarly, by taking z = ζjp(1− ζp) for

various j, one obtains a1, . . . , ap−2 ∈ 1
21−?

Z as well.
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To restrict the possible values of b0, . . . , bp−2, we consider z =
√
Dζjp(1−

ζp). For example, setting z =
√
D(1− ζp) we have

b(x, z) =
1

2?p
TrL/Q(x

√
D(1− ζp))

=
1

2?p
TrL/Q

(
p−2∑
j=0

(aj +
√
Dbj)ζ

j
p

√
D(1− ζp)

)

=
1

2?p

p−2∑
j=0

(
TrL/Q(

√
D(ajζ

j
p − ajζj+1

p )) + TrL/Q(D(bjζ
j
p − bjζj+1

p ))
)

=
1

2?p

p−2∑
j=0

Dbj(TrL/Q(ζjp)− TrL/Q(ζj+1
p ))

=
Db0([L : Q] + 2)

2?p

= 21−?Db0.

Thus, we must have b0 ∈ 1
21−?D

Z. The same argument using z =√
Dζjp(1− ζp) gives that b1, . . . , bp−2 ∈ 1

21−?D
Z as well. �

Set N to be the OL+-submodule of L+ generated by the elements
bL/Q(x, x)

2
for x ∈ p∨.

Proposition 7.2. [7, Prop. 5.9(ii)] One has L = N−1D−1
L+.

This proposition gives that to calculate the level, all we need to
calculate is N and DL+ . To calculate DL+ , we make use of the following
well-known theorem.

Theorem 7.3. Let E/Q be a number field. The prime ideal factors of
DE are the primes in E that ramify over Q. More precisely, for any
prime ideal q in OE lying over a rational prime q, with ramification
index e, the exact power of q dividing DE is qe−1 if e 6≡ 0 (mod q) and
qe | DE if q | e.

Set ℘ = p ∩ L+, i.e., ℘ = 〈(1 − ζp)(1 − ζp)〉. The previous theorem
immediately gives

DL+ = ℘(p−3)/2〈2?
√
D〉.

Now consider N. We have
bL/L+(x, x)

2
=

2xx

21+?p
=

xx

2?p
. From the

description above of the elements in p∨, we immediately see that N ⊂
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1

2?
√
Dp
OL+ . We just need to show containment in the other direction.

Letting x = 1 we see N contains
1

2?p
. Setting x =

1√
D

we have

1

2?Dp
∈ N. By setting x = 1 +

1√
D
ζp we see that

bL/L+(x, x)

2
=

1

2?p

(
1 +

1√
D
ζp

)(
1 +

1√
D
ζ−1
p

)
=

1

2?p

(
1 +

1

D
+

1√
D

(ζp + ζ−1
p )

)
∈ N.

Using that (ζp + ζ−1
p ) ∈ O+

L ,
1

2?p
and

1

2?Dp
are in N, we obtain

1√
D
∈

N. This gives the desired containment. Thus, we have

N = ℘(1−p)/2〈2?
√
D〉−1.

Combining this with the calculation of DL+ , we have L = ℘. In other
words,

θj ∈M1(℘, χ)

for all j ∈ p∨ where χ is the character as defined in the previous section.

For our set-up we have χ :
(
O+
L/℘

)× → {±1} and for ` 6= p, we have

χ(`) =

(
Dp−1

`

)
.

We now turn our attention to the lattice ΛC constructed in Section
5. Here we take V = Ln and define BL/L+ : V × V → L+ by setting

BL/L+(v, w) =
n∑
j=1

bL/L+(vj, wj)

for v = (v1, . . . , vn) and w = (w1, . . . , wn). Associated to ΛC we have

θΛC(z) =
∑
v∈ΛC

eπiTr(zBL/L+ (v,v))

where as above we define

Tr(zBL/L+(v, v)) =

p−1∑
j=1

zjσj(BL/L+(v, v)).

We have via Theorem 6.3 that

θΛC ∈Mn/2(LC, χC)
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where LC and χC are as defined in Section 6 and depend on the partic-
ular code chosen. One can note in the case that D = 1, the associated
lattice is unimodular and so then LC = 1 and χC is the trivial character.
In our case of D > 1, we know the lattice is not unimodular so we have
LC is strictly contained in OL+ .

Write Fp2 = {α1, . . . , αp2}. Observe that we have OL ⊂ p∨, so
we have p∨ � OL � Fp2 . In particular, we choose representatives
{x1, . . . , xp2} in p∨ so that xj maps to αj under the natural surjection
given above. Given c ∈ C, let lαj(c) denote the number of times αj
appears in the codeword c. We recall the complete weight enumerator
of the code C is defined by

WC(X1, . . . , Xp2) =
∑
c∈C

p2∏
j=1

X
lαj(c).

j

Theorem 7.4. Let C ⊂ Fn
p2 be a linear code with C ⊂ C⊥. Then we

have the following identity:

θΛC = WC(θx1 , . . . , θxp2 ).

Proof. Observe we can write

θΛC(z) =
∑
c∈C

∑
v∈Π−1(c)

eπiTr(zBL/L+ (v,v)).

We consider the inside summation. We have∑
v∈Π−1(c)

eπiTr(zBL/L+ (v,v)) =

p2∏
j=1

θ
lαj(c).

xj

Now we sum over c ∈ C to obtain the result. �

We should note here that the theta series θx1 , . . . , θxp2 are not alge-

braically independent, so this isn’t an optimal result. In fact, they are
not even distinct. For instance, the transformation property for theta
series gives that θj = θ−j for all j ∈ p∨. Ideally one would define a
generalized Lee weight φ as in [10] so that one has θΛC is the associated
polynomial Wφ evaluated only on the algebraically independent theta
series. This is the subject of future work.
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